• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 21
  • 17
  • 8
  • 6
  • 3
  • 1
  • Tagged with
  • 103
  • 29
  • 25
  • 23
  • 21
  • 21
  • 18
  • 16
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

A Unified Constitutive Model For Large Elasto-plastic Deformation

Raghavendra, Rao Arun 10 1900 (has links)
Rapid development and stiff competition in material related industries such as the automotive, demand very high precision in end products in very quick time. The transformation of raw material into an intricate-shaped final product involves various intermediate steps like design, material selection, manufacturing processes, etc. In all these steps, an in-depth understanding of material behavior plays an important role. The available traditional methods such as trial-and-error, especially in the case of die design, become highly inefficient in terms of time and money. This, there is a growing interest in simulation of the final product in order to predict different parameters which are important in design and manufacturing. Currently available simulation techniques are based on existing theories of plasticity or large deformation. These theories have been developed over several decades and many theoretical and practical issues have been debated over the years. Though the theories have great utility in understanding and solving some practical problems, there are ranges of applications for which no acceptable models are available. Most of these theories are either materials or process-specific with oversimplified real physical situations using assumptions and empirical relations. Development of field equations from first principles to stimulate elasto-plastic deformation is one such, still a subject of on-going discussion. Materials and composites exhibit hysteresis even at very low stresses, i.e., inelasticity is always present under all types of loading. This observation shows that the representing constitutive relation cannot treat the elastic and plastic deformations separately. The deformation is due to changes in size and shape, and studies with varying strain rates show considerable material sensitivity to the rate of deformation. Therefore, a generalized field equation is developed from first principles in the Eulerian coordinate system using material resistance to changes in size and shape, and their rates. The formulation uses a unified approach representing continuous effect of elastic and plastic strains and strain rates. The field equation involves eight material parameters, viz. bulk modulus, shear modulus, material shear velocity, material bulk viscosity, and four more constants associated with activation points related to deviatoric and volumetric strains and plastic strain rates. The elastic moduli, bulk and shear, are constants, and so also the material viscosities, while plastic stain rates are functions of elastic strain rates. The field equation redces to Cauchy’s equation in the solid limit and Navier-Stokes equation in the fluid limit. Simple experimental measurements are suggested to obtain the numerical values of the material parameters. Uniaxial tension tests are carried out on commercially available mild steel and aluminium alloy at different strain rates to quantify any variations in the values of material parameters during large deformation. Experimental results and the classical understanding of material deformation reveal the constant nature of elastic moduli during large deformation and, from fluids, the viscosities seem to remain constant. Around the yield region, materials experience a sharp increase in absorbed energy which is modeled to represent the plastic strain rates. The variations and contributions from elastic and plastic strains, both volumetric and deviatoric, and the corresponding stresses are observed. The effects of strain rate on plastic stress and energy absorbed are investigated. The model is checked for different materials and loading conditions to ascertain the proposed changes to earlier theories. Available experimental data in the literature are used for this purpose. The analysis shows that, though the overall stress-strain relations of different materials look similar, their internal responses differ. The internal response of a material depends on various microstructural factors, like alloying elements, impurities, etc. The present model is able to capture those internal differences between various materials. Numerical solution of different plasticity problems have to be undertaken to ascertain the applicability, generality, realism, accuracy and feasibility of the model.
62

Skalenübergreifende Modellierung und Simulation des mechanischen Verhaltens von textilverstärktem Polypropylen unter Nutzung der XFEM

Kästner, Markus 20 April 2010 (has links) (PDF)
Die Arbeit beschreibt die skalenübergreifende Modellierung und Simulation des Werkstoffverhaltens von Faser-Kunststoff-Verbunden mit textiler Verstärkungsstruktur, die ausgehend von den konstitutiven Eigenschaften der Verbundbestandteile (Mikroskala) und ihrer geometrischen Anordnung im Verbund (Mesoskala) die rechnerische Vorhersage des effektiven Materialverhaltens des Verbundes (Makroskala) ermöglicht. Neben Schädigungsprozessen beeinflusst insbesondere das dehnratenabhängige Materialverhalten der polymeren Matrix das mechanische Verhalten des Verbundes. Dieser Einfluss wird anhand verschiedener Glasfaser-Polypropylen-Verbunde numerisch untersucht. Ein viskoplastisches Materialmodell bildet dabei das nichtlineare Materialverhalten von Polypropylen ab. Die Modellierung der textilen Verstärkungsstruktur erfolgt durch Anwendung der erweiterten Finiten-Elemente-Methode (XFEM). Anhand des Vergleichs von rechnerisch und experimentell gewonnenen Ergebnissen erfolgt schließlich die Verifikation der vorgeschlagenen Modellierungsstrategie. / This contribution covers the trans-scale modelling and simulation of the mechanical behaviour of textile-reinforced polymers. Starting from the material properties of the individual constituents (micro-scale) and their geometrical arrangement (meso-scale), the effective material behaviour of the composite (macro-scale) is numerically predicted. In addition to damage processes, the inelastic deformation behaviour of the composite is influenced by the strain-rate dependent material behaviour of the polymeric matrix. This influence is numerically investigated for different glass-fibre-polypropylene composites. A viscoplastic material model accounts for the nonlinear mechanical behaviour of polypropylene. The complex textile reinforcement is modelled by the eXtended finite element method (XFEM). A comparison of computed and experimental results allows for the verification of the proposed modelling strategy.
63

Application de la méthode des éléments discrets aux déformations finies inélastiques dans les multi-matériaux / Application of the Discrete Element Method to Finite Inelastic Strain in Multi-Materials

Gibaud, Robin 28 November 2017 (has links)
Le formage de matériaux multiphasés comprend des mécanismes complexes en lien avec la rhéologie,la morphologie et la topologie des phases.Du point de vue numérique,la modélisation de ces phénomènes en résolvant les équations aux dérivées partielles (EDP) décrivant le comportement continu des phases n'est pas trivial.En effet,de nombreuses discontinuités associées aux phases se déplacent et peuvent interagir.Ces phénomènes peuvent être conceptuellement déclicats à intégrer au modèlecontinu et coûteux en termes de calcul.Dans cette thèse,la méthode des éléments discrets (DEM) est utilisée pour modéliser phénoménologiquement les déformations finies inélastiques dans les multi-matériaux.Les lois d'interactions attractive-répulsive sont imposées à des particules fictives,dont les ré-arrangements collectifs modélisent les déformations irréversibles de milieux continus.Le comportement numérique des empilements de particules est choisi pourreproduire des traits caractéristiques de la viscoplasticité parfaite etisochore:contrainte d'écoulement,sensibilité à la vitesse de déformation,conservation du volume.Les résultats d'essais de compression de bi-matériaux simples,simulés avec la DEM,sont comparés à la méthode des éléments finis (FEM) et sont en bon accord.Le modèle est entendu pour pouvoir supporter des sollicitations de traction.Une méthode de détection de contacts et d'auto-contacts d'objets physiques estproposée,basée sur l'approximation locale des surfaces libres.Les capacités de la méthodologie globale sont testées sur des mésostructurescomplexes,obtenues par tomographie aux rayons X.La compression à chaud d'un composite métallique dense est modélisée.La co-déformation peut être observées à l'échelle spatiale des phases.Deux cas de matériaux ``poreux'' sont considérés.Premièrement la simulation de la compression puis traction d'alliagesd'aluminium présentant des pores.Ces pores proviennent du coulage du matériau,leur fermeture et ré-ouverture mécanique est modélisée,y compris la coalescence à grande déformation.Deuxièmement la simulation de la compression de mousse métallique de faibledensité.Typiquement utilisée dans le but d'absorber de l'énergie mécanique,la compression jusqu'à densification provoque de nombreuses interactions entreles bras de matière. / Forming of multiphase materials involves complex mechanisms linked with therheology,morphology and topology of the phases.From a numerical point of view,modeling such phenomena by solving the partial differential equation (PDE) system accounting for thecontinuous behavior of the phases can be challenging.The description of the motion and the interaction of numerous discontinuities,associated with the phases,can be conceptually delicate and computationally costly.In this PhD,the discrete element method (DEM) is used to phenomenologically model finite inelastic strain inmulti-materials.This framework,natively suited for discrete phenomena,allows a flexible handling of morphological and topological changes.Ad hoc attractive-repulsive interaction laws are designed betweenfictitious particles,collectively rearranging to model irreversible strain in continuous media.The numerical behavior of a packing of particles can be tuned to mimic keyfeatures of isochoric perfect viscoplasticity:flow stress, strain rate sensitivity, volume conservation.The results for compression tests of simple bi-material configurations,simulated with the DEM,are compared to the finite element method (FEM) and show good agreement.The model is extended to cope with tensile loads.A method for the detection of contact and self-contact events of physicalobjects is proposed,based on a local approximation of the free surfaces.The potential of the general methodology is tested on complex mesostructuresobtained by X-ray tomography.The high temperature compression of a dense metallic composite is modeled.The co-deformation can be observed at the length scale of the phases.Two cases of ``porous'' material are considered.Firstly,the simulation of the compression and the tension of aluminum alloys with poresis investigated.These pores stem from the casting of the material,their closure and re-opening is modeled,including the potential coalescence occurring at large strain.Secondly,the compression of a metallic foam,with low relative density,is modeled.Typically used in energy absorption applications,the compression up to densification involves numerous interactions between thearms.
64

Identification of strainrate dependent hardening sensitivity of metallic sheets under in-plane biaxial loading / Identification de la sensibilité à la vitesse de déformation de l'écrouissage de tôles métallique minces sous sollicitations planes biaxiales

Liu, Wei 10 March 2015 (has links)
Les procédés de mise en forme des tôles métalliques sont largement utilisés dans l’industrie mécanique. La simulation numérique des opérations de mise en forme nécessite une caractérisation précise des modèles de comportement rhéologique des matériaux. Dans de nombreuses opérations de mise en forme des tôles métalliques telle que l’emboutissage, l’hydroformage, …, de grandes déformations et des vitesses de déformations dites intermédiaires peuvent être atteintes sous des états biaxiaux de déformation ou de contrainte. L’objectif de ce travail est de montrer le potentiel de l’essai de traction bi-axiale pour caractériser l’écrouissage des tôles métalliques pour de grandes déformations et dans une gamme de vitesse de déformation dite intermédiaire. A partir de simulations numériques, une forme optimale d’éprouvette en croix, permettant d’atteindre 30% de déformation plastique équivalente dans la zone centrale de l’éprouvette sous un chargement équibiaxial, a été proposée. Par la suite, des essais quasi-statiques et dynamiques de traction bi-axiale ont été réalisés sur la forme d’éprouvette proposée à partir d’une machine dédiée d’essais servo-hydraulique à quatre vérins. Dans un premier temps, le matériau choisi est un alliage d’aluminium AA5086 ne présentant pas de dépendance à la vitesse de déformation. Les déformations expérimentales sont déterminées à partir de la technique de corrélation d’images. L’écrouissage isotrope de différents modèles est identifié à partir d’une procédure inverse basée sur une modélisation éléments finis de l’essai de traction biaxiale. Trois critères de plasticité (Mises, Hill 48 et Bron et Besson) ont été successivement utilisés pour l’identification des paramètres des lois d’écrouissage. Les résultats obtenus montrent d’une part que la modélisation est très sensible au critère de plasticité choisi, et d’autre part que le critère de Bron et Besson permet d’obtenir une très bonne corrélation entre les courbes d’écrouissage identifiées à partir de l’essai bi-axial et de l’essai uni-axial. Pour les tests dynamiques bi-axiaux, les phénomènes de résonance du dispositif mécanique, générés à l’impact initial de début d’essai et matérialisés par de fortes oscillations du signal d’effort, sont atténués par l’interposition d’un élément en élastomère dans le système d’ancrage de chaque bras de l’éprouvette. Pour finir, la méthodologie d’identification proposée est appliquée à la caractérisation du comportement viscoplastique d’un acier dual phase DP600. Les courbes d’écrouissage identifiées à partir des essais bi-axiaux ont été comparées à celles obtenues par des essais uni-axiaux pour une gamme de vitesse de déformation allant de 10- 3s-1 à 101s-1. Le DP600 présente une même sensibilité à la vitesse de déformation quelque soit la sollicitation, uni-axiale ou bi-axiale. Les lois d’écrouissage de Ludwick et de Voce, identifiées jusqu’à 30% de déformation plastique équivalente sur la base de données expérimentales constituées des essais bi-axiaux, sont relativement proches. Les différences observées entre ces courbes d’écrouissage et celles identifiées à partir des essais de traction uni-axiaux montrent tout l’intérêt de l’essai de traction bi-axiale sur éprouvette en croix. / Sheet metal forming processes are widely adopted to produce panels, tubes, profiled parts in manufacturing industry. The numerical simulation of the forming processes requires accurate constitutive models of material. In many sheet metal working operations such as stamping, hydroforming, …, large strains and intermediate strain rates can be reached under biaxial strain or stress states. The objective of this work is to show the potential of the biaxial in-plane tensile test to characterize the hardening behaviour of metal sheets up to large strain levels. By numerical investigation, an optimal cruciform shape is designed to obtain large equivalent plastic strain, up to 30%, at the central zone under equi-biaxial strain path. As expected, the initial cracks of tested specimens are always observed at the central zone. Then, quasi-static and dynamic biaxial tensile tests on in-plane cross specimens have been performed on a dedicated servo-hydraulic machine. These biaxial tensile tests have been carried out on aluminium alloy AA5086 to validate the identification methodology of hardening behaviour under biaxial loading. This alloy has been chosen since its hardening behaviour is not dependent on the strain rate. Digital Image Correlation (DIC) technique is used for strain measurement. The parameters of isotropic hardening models are identified by inverse analysis based on the finite element model of the biaxial tensile test. Three yield criteria of Mises, Hill48 and Bron and Besson are compared for the parameter identification of different hardening laws. It is shown that the hardening law identified by biaxial test is precise only if an appropriate yield function is preliminarily determined. The biaxial flow stress curve identified with Bron and Besson yield function have been found in good agreement with the experimental flow stress curve obtained from uniaxial tensile tests. For biaxial tests at intermediate strain rates, damping layers are adopted to reduce oscillations on force versus time curves. The comparison of flow stress curves, identified from quasi-static and dynamic biaxial in-plane tensile tests on the non strain rate-dependent material AA5086, validates the identification methodology of strain-rate dependent hardening models. Finally, the proposed methodology is applied to the hardening characterization of a strain-rate dependent Dual Phase steel DP600 at room temperature. Identified biaxial flow stress curves have been compared with uniaxial ones for different strain rates ( . = 10-3s-1, 10-1s-1 and 101s-1). DP600 steel exhibits the same positive strain rate sensitivity for uniaxial and biaxial strain states. The biaxial flow stress curves identified on the basis of Ludwick and Voce hardening models are close, up to equivalent plastic strains of 30%. The benefits of the proposed methodology, based on a biaxial in-plane tensile test carried out on cross specimen, are clearly shown since the hardening behaviour identified in this case for large strains (up to 30%) is very different from the one identified from uniaxial tensile test on a smaller strain range.
65

Prise en compte des sollicitations thermiques sur les comportements instantané et différé des géomatériaux / Influence of temperature on the rate-independent and rate-dependent behaviours of geomaterials and underground excavations

Raude, Simon 13 January 2015 (has links)
Le comportement thermomécanique des géomatériaux est un sujet de recherche qui touche un nombre important de domaines d'application : le stockage des déchets radioactifs en couche géologique profonde, le comportement des structures géothermiques, le stockage de chaleur, le comportement des matériaux à proximité des câbles à haute tension, le comportement saisonnier des matériaux asphaltiques, l'origine des tremblements de terre, etc. Dans le contexte du stockage des déchets radioactifs en couches géologiques profondes, un intérêt particulier a récemment été accordé à l'étude du comportement thermomécanique de l'argile de Boom, l'argile à Opalines, l'argilite du Callovo-Oxfordien et la diorite d'Äspö. L'ensemble de ces études montre qu'une exposition à des températures élevées peut altérer les propriétés physiques et mécaniques des géomatériaux : l'angle de frottement, la cohésion, la perméabilité-porosité, les modules élastiques, la résistance, le comportement volumique, le comportement post-pic, le comportement à long terme, etc. Depuis une trentaine d'années, un nombre important de modèles de comportement ont été développés dans le but d'intégrer les effets de la température à des modèles élasto-plastiques dérivés de la théorie de l'état critique. Cependant, peu de ces modèles intègrent les effets du temps sur le comportement thermomécanique des géomatériaux ; lequel apparaît essentiel au dimensionnement de structures à long terme. L'objectif de ces travaux de thèse est de répondre à cette problématique en intégrant les effets de la température au modèle de comportement mécanique L&K. Le modèle de comportement L&K est un modèle à deux mécanismes, l'un dit "plastique" permettant de décrire le comportement mécanique instantané des matériaux, l'autre dit "viscoplastique" permettant de décrire le comportement différé. Après un état des lieux détaillé concernant les comportements thermomécaniques instantané et différé des géomatériaux, les effets de la température ont été pris en compte à travers l'évolution des paramètres d'écrouissage des deux mécanismes. Ce modèle thermomécanique a été validé sur des applications expérimentales en support de ce travail de thèse. Les résultats montrent que la formulation proposée permet de reproduire fidèlement le comportement thermomécanique des géomatériaux. Les applications à venir concernent des calculs sur ouvrage dans le contexte du stockage des déchets radioactifs / The effect of temperature on the behaviour of geomaterials is a crucial issue in geotechnical and underground engineering. The thermo-mechanical behaviour of rocks and soils contains many applications in the fields of high-level nuclear waste disposal, heat storage, geothermal structures, petroleum drilling, zones around buried high-voltage cables, bituminous materials, and geological research. In the context of nuclear waste disposal at great depths, the thermo-mechanical behaviour of Boom clay, Opalinus clay, Callovo-Oxfordian argillite and Äspö diorite has recently received special attention in Europe. Research in these areas has demonstrated that rocks and soils may suffer from changes in their mechanical properties during short-to long-term exposure to an elevated temperature. These changes include effects on the friction angle, permeability/porosity, elastic moduli, shear strength, dilatancy, softening, brittle-to-ductile transition, creep, etc... Since Prager's first works on the modelling of non-isothermal plastic deformation, many constitutive models have been developed to include these phenomena in computational inelasticity. Most models generalize the critical-state model to include the effects of temperature on the short-term behaviour of clays and rocks. However, the effect of time on the thermo-mechanical behaviour is often not coupled to the rate-independent plasticity even if the long-term behaviour appears essential for ensuring the safety and stability during the design and construction analysis in many fields, such as the storage of nuclear waste and more generally underground excavations. Thus, it appears important to combine both instantaneous and delayed thermo-mechanical effects to obtain appropriate constitutive equations to model such problems. In this Ph.D thesis, a unified thermo-plastic/viscoplastic constitutive model has been developed for this purpose. This model is a straightforward extension of the unified elasto-plastic/viscoplastic L&K constitutive model which was developed in previous Ph.D works. The updated thermo-mechanical model includes the evolutions of the two yield limits and the fluidity coefficient with temperature. The model was validated under several thermo-mechanical conditions on clayey rocks. The typical features of the thermo-mechanical behaviour of geomaterials were well reproduced. The numerical predictions of the triaxial compression tests and creep tests clearly indicate that the model can predict the overall behaviour of geomaterials under deviatoric and non-isothermal stress paths
66

Méthode des champs virtuels pour la caractérisation du comportement dynamique de matériaux métalliques sous chargement purement inertiel / Virtual fields method for the dynamic behaviour of metallic materials under purely inertial loads

Bouda, Pascal 11 March 2019 (has links)
Les travaux de la thèse visent à mettre en place une méthodologie innovante de caractérisation du comportement viscoplastique des matériaux métalliques sous chargement purement inertiel. Sous chargements mécaniques extrêmes (e.g., crash, impact ou explosions), leur comportement mécanique présente en effet pour nombre d’entre eux une sensibilité à la vitesse de déformation. Des approches dites statiquement déterminées sont majoritairement utilisées pour caractériser leur comportement, mais elles requièrent de nombreux essais dont les conditions expérimentales sont souvent contraintes comme par exemple l’homogénéité de la vitesse de déformation qui doit être maintenue constante en temps par exemple. En revanche, des approches dites statiquement indéterminées permettent l’exploitation d’essais mécaniques avec peu d’hypothèses (voire sans) sur les conditions d’essai. Une méthodologie fondée sur un essai d’impact purement intertiel est mise en oeuvre ici pour identifier le comportement viscoplastique de ces matériaux. Avec la Méthode des Champs Virtuels, la méthodologie permet l’identification des paramètres matériaux en exploitant uniquement la mesure des champs de déformation et d’accélération, potentiellement hétérogènes en temps et en espace. Ainsi, celui-ci peut être caractérisé sur une large gamme de déformations et de vitesses de déformation plastiques en procédant à un nombre limité d’expériences. La méthode repose sur le développement d’un simulateur d’images avancé permettant de définir au préalable l’ensemble du dispositif expérimental (géométrie de l’éprouvette et conditions expérimentales). Optimisées numériquement pour prescrire les paramètres d’essai critiques, les réalisations expérimentales menées sur un alliage de Titane utilisé dans l’industrie aéronautique ont permis d’identifier les paramètres d’un modèle de Johnson-Cook sur un spectre de déformations et de vitesses de déformation plastiques pré-déterminé. Les incertitudes de la mesure sont également intégrées et analysées dans ce travail. / This thesis aims at developing an innovative methodology for viscoplastic material behaviour characterization of metallic materials under purely inertial loads. Indeed, their mechanical behaviour under extreme conditions (e.g., crash, impact or explosions) is often rate-dependant. Statically determinate approaches are mainly used to characterize their behaviour. However, they require numerous tests for which testing conditions are strongly constrained, such as the strain rate which has to remain constant in time and space for instance. By contrast, statically undeterminate approaches enable test processing with a few (or without) hypotheses on experimental conditions. In this work, the Image-Based Inertial Impact test methodology has been extended to characterize the viscoplastic behaviour of metallic materials. Owing to the Virtual Fields Method, it enables the identification of constitutive material parameters with the sole knowledge of strain and acceleration fields (possibly heterogeneous in time and space). Therefore, constitutive models can be characterized over a wide range of plastic strain and strain rate, while the number of tests is limited. Tests design notably relies on the development of a synthetic images generator to determine the experimental setup (e.g., specimen geometry or testing conditions). Finally, experiments are carried out with optimized test configurations to identify Johnson-Cook parameters over a predicted range of plastic strain and strain rate for a titanium alloy widely used in aerospace industry. Identification uncertainties are also quantified and analysed in this work.
67

Modélisation du couplage endommagement-perméabilité dans les géomatériaux anisotropes. Application aux ouvrages souterrains du site de Bure / Modeling of damage-permeability coupling in anisotropic geomaterials. Application to Bure underground works

Mahjoub, Mohamed 20 June 2017 (has links)
Le but de cette thèse est de mettre en place un nouveau modèle de comportement hydromécanique permettant de prendre en compte les anisotropies initiale et induite et l'impact de l'endommagement mécanique sur la perméabilité. Afin de construire ce modèle, une nouvelle approche de modélisation permettant d'étendre les lois de comportement mécaniques des matériaux isotropes aux matériaux anisotropes est développée. Cette approche, employée dans le cadre des milieux continus à variables internes, est utilisée pour construire une loi de comportement elasto-viscoplastique qui distingue les régimes de sollicitation en compression et en traction. Un tenseur de second ordre est introduit pour décrire l'anisotropie induite suite à des sollicitations de traction et une variable interne scalaire est utilisée pour traduire le durcissement/adoucissement du matériau suite à des sollicitations de compression. Sous des sollicitations complexes, ces deux mécanismes sont couplés et l'effet de fermeture/réouverture des fissures est traité. Le couplage endommagement-perméabilité est ensuite modélisé par l'introduction d'une loi phénoménologique reliant la perméabilité intrinsèque du matériau aux variables internes de la mécanique.Ce modèle a été appliqué dans le cas des ouvrages souterrains du site de Bure afin de comprendre les mécanismes d'altération des propriétés hydromécaniques autour des galeries et des alvéoles de stockage causée non seulement par les opérations de creusement mais également par les surpressions dues à la production d'hydrogène gazeux suite à la corrosion des parties métalliques des modules de déchets. / This thesis aims to introduce a new hydromechanical constitutive model taking into account both initial and induced anisotropies and the impact of the mechanical damage on the permeability. To build this model, a new modeling approach is developed allowing the extension of mechanical behavior laws from isotropic materials to transversely isotropic materials. This approach is used, within the framework of continuous media with internal variables, to propose an elasto-viscoplastic behavior law that distinguishes between compressive and tensile loading regimes. A second order tensor is introduced to describe the induced anisotropy due to tensile loadings, and a scalar internal variable is employed to account for hardening and softeningof the material due to compressive loadings. Under complex loadings, these two mechanisms are coupled, and the effect of cracks closing/reopening is taken into consideration. The damage-permeability coupling is modeled by the introduction of a phenomenological law linking the material intrinsic permeability to the mechanical internal variables.The developed model is applied to the case of the underground drifts of Bure site in order to better understand the mechanisms of hydromechanical properties alteration, around drifts and storing cells. Not only the impact of the excavation operations is considered but also the consequences of the overpressures caused by the produced hydrogen due to the corrosion of the metallic parts of nuclear waste containers.
68

Computational and Experimental Nano Mechanics

Alipour Skandani, Amir 04 September 2014 (has links)
The many advances of nano technology extensively revolutionize mechanics. A tremendous need is growing to further bridge the gap between the classical mechanics and the nano scale for many applications at different engineering fields. For instance, the themes of interdisciplinary and multidisciplinary topics are getting more and more attention especially when the coherency is needed in diagnosing and treating terminal diseases or overcoming environmental threats. The fact that how mechanical, biomedical and electrical engineering can contribute to diagnosing and treating a tumor per se is both interesting and unveiling the necessity of further investments in these fields. This dissertation presents three different investigations in the area of nano mechanics and nano materials spanning from computational bioengineering to making mechanically more versatile composites. The first part of this dissertation presents a numerical approach to study the effects of the carbon nano tubes (CNTs) on the human body in general and their absorbability into the lipid cell membranes in particular. Single wall carbon nano tubes (SWCNTs) are the elaborate examples of nano materials that departed from mere mechanical applications to the biomedical applications such as drug delivery vehicles. Recently, experimental biology provided detailed insights of the SWCNTs interaction with live organs. However, due to the instrumental and technical limitations, there are still numerous concerns yet to be addressed. In such situation, utilizing numerical simulation is a viable alternative to the experimental practices. From this perspective, this dissertation reports a molecular dynamics (MD) study to provide better insights on the effect of the carbon nano tubes chiralities and aspect ratios on their interaction with a lipid bilayer membrane as well as their reciprocal effects with surface functionalizing. Single walled carbon nano tubes can be utilized to diffuse selectively on the targeted cell via surface functionalizing. Many experimental attempts have smeared polyethylene glycol (PEG) as a biocompatible surfactant to carbon nano tubes. The simulation results indicated that SWCNTs have different time-evolving mechanisms to internalize within the lipid membrane. These mechanisms comprise both penetration and endocytosis. Also, this study revealed effects of length and chirality and surface functionalizing on the penetrability of different nano tubes. The second part of the dissertation introduces a novel in situ method for qualitative and quantitative measurements of the negative stiffness of a single crystal utilizing nano mechanical characterization; nano indentation. The concept of negative stiffness was first introduced by metastable structures and later by materials with negative stiffness when embedded in a stiffer (positive stiffness) matrix. However, this is the first time a direct quantitative method is developed to measure the exact value of the negative stiffness for triglycine sulfate (TGS) crystals. With the advancements in the precise measuring devices and sensors, instrumented nano indentation became a reliable tool for measuring submicron properties of variety of materials ranging from single phase humongous materials to nano composites with heterogeneous microstructures. The developed approach in this chapter of the dissertation outlines how some modifications of the standard nano indentation tests can be utilized to measure the negative stiffness of a ferroelectric material at its Curie temperature. Finally, the last two chapters outline the possible improvements in the mechanical properties of conventional carbon fiber composites by introducing 1D nano fillers to them. Particularly, their viscoelastic and viscoplastic behavior are studied extensively and different modeling techniques are utilized. Conventional structural materials are being replaced with the fiber-reinforced plastics (FRPs) in many different applications such as civil structures or aerospace and car industries. This is mainly due to their high strength to weight ratio and relatively easy fabrication methods. However, these composites did not reach their full potential due to durability limitations. The majorities of these limitations stem from the polymeric matrix or the interface between the matrix and fibers where poor adhesion fails to carry the desired mechanical loadings. Among such failures are the time-induced deformations or delayed failures that can cause fatal disasters if not taken care of properly. Many methodologies are offered so far to improve the FRPs' resistance to this category of time-induced deformations and delayed failures. Several researchers tried to modify the chemical formulation of polymers coming up with stiffer and less viscous matrices. Others tried to modify the adhesion of the fibers to the matrix by adding different chemically functional groups onto the fibers' surface. A third approach tried to modify the fiber to matrix adhesion and at the same time improve the viscous properties of the matrix itself. This can be achieved by growing 1D nano fillers on the fibers so that one side is bonded to the fiber and the other side embedded in the matrix enhancing the matrix with less viscous deformability. It is shown that resistance to creep deformation and stress relaxation of laminated composites improved considerably in the presence of the nano fillers such as multiwall carbon nano tubes (MWCNTs) and zinc oxide nano wires (ZnO- NWs). The constitutive behaviors of these hybrid composites were investigated further through the use of the time temperatures superposition (TTS) principle for the linear viscoelastic behavior and utilizing phenomenological models for the viscoplastic behavior. / Ph. D.
69

Modélisation thermomécanique de l'assemblage d'un composant diamant pour l'électronique de puissance haute température / Thermomechanical modeling of a diamond based packaging for high temperature power electronics

Msolli, Sabeur 10 November 2011 (has links)
L'utilisation du diamant comme composant d'électronique de puissance est une perspective intéressante tant en ce qui concerne les applications hautes température que forte puissance. La problématique principale de ces travaux réalisés dans le cadre du programme Diamonix, réside dans l'étude et l'élaboration d'un packaging permettant la mise en oeuvre d'une puce diamant devant fonctionner à des températures variant entre -50°C et 300°C. Nous nous sommes intéressés au choix des matériaux de connexion de la puce avec son environnement. Suite à l'étude bibliographique, nous proposons différentes solutions de matériaux envisageables pour le substrat métallisé, les brasures et les métallisations. Dans un second temps, les différents éléments ont été réalisés puis caractérisés à partir d'essais de nanoindentation et de nanorayage. Des essais mécaniques ont permis de caractériser le comportement élastoviscoplastique et l'endommagement des brasures. Ces derniers essais ont servi de base expérimentale à l'identification des paramètres d'un modèle de comportement viscoplastique couplé avec l'endommagement et qui a été spécialement élaboré pour cette étude. Le modèle de comportement a été implémenté dans un code de calcul par éléments finis via une sous-routine. Il permet notamment de simuler le processus de dégradation d'un assemblage. Enfin, ce modèle de comportement a été mis en oeuvre dans des modélisations thermomécaniques de différentes configurations de véhicules test. / Use of diamond as constitutive component in power electronics devices is an interesting prospect for the high temperature and high power applications. The main challenge of this research work included in the Diamonix program is the study and the elaboration of a single-crystal diamond substrate with electronic quality and its associated packaging. The designed packaging has to resist to temperatures varying between -50°C and 300°C. We contributed to the choice of the connection materials intended to be used in the final test vehicle and which can handle such temperature gaps. In the first part, we present a state-of-the-art of the various materials solutions for extreme temperatures. Following this study, we propose a set of materials which considered as potential candidates for high temperature packaging. Special focus is given for the most critical elements in power electronic assemblies which are metallizations and solders. Once the materials choice carried out, thin substrate metallizations, solders and DBC coatings are studied using nanoindentation and nanoscratch tests. Mechanical tests were also carried out on solders to study their elastoviscoplastic and damage behavior. The experimental results are used as database for the identification of the parameters of the viscoplastic model coupled with a porous damage law, worked out for the case of solders. The behavior model is implemented as a user subroutine UMAT in a FE code to predict the degradation of a 2D power electronic assembly and various materials configuration for a 3D test vehicle.
70

Décompositions tensorielles et factorisations de calculs intensifs appliquées à l'identification de modèles de comportement non linéaire / Tensor decompositions and factorizations of intensive computing applied to the calibration of nonlinear constitutive material laws

Olivier, Clément 14 December 2017 (has links)
Cette thèse développe une méthodologie originale et non intrusive de construction de modèles de substitution applicable à des modèles physiques multiparamétriques.La méthodologie proposée permet d’approcher en temps réel, sur l’ensemble du domaine paramétrique, de multiples quantités d’intérêt hétérogènes issues de modèles physiques.Les modèles de substitution sont basés sur des représentations en train de tenseurs obtenues lors d'une phase hors ligne de calculs intensifs.L'idée essentielle de la phase d'apprentissage est de construire simultanément les approximations en se basant sur un nombre limité de résolutions du modèle physique lancées à la volée.L'exploration parcimonieuse du domaine paramétrique couplée au format compact de train de tenseurs permet de surmonter le fléau de la dimension.L'approche est particulièrement adaptée pour traiter des modèles présentant un nombre élevé de paramètres définis sur des domaines étendus.Les résultats numériques sur des lois élasto-viscoplastiques non linéaires montrent que des modèles de substitution compacts en mémoire qui approchent précisément les différentes variables mécaniques dépendantes du temps peuvent être obtenus à des coûts modérés.L'utilisation de tels modèles exploitables en temps réel permet la conception d'outils d'aide à la décision destinés aux experts métiers dans le cadre d'études paramétriques et visent à améliorer la procédure de calibration des lois matériaux. / This thesis presents a novel non-intrusive methodology to construct surrogate models of parametric physical models.The proposed methodology enables to approximate in real-time, over the entire parameter space, multiple heterogeneous quantities of interest derived from physical models.The surrogate models are based on tensor train representations built during an intensive offline computational stage.The fundamental idea of the learning stage is to construct simultaneously all tensor approximations based on a reduced number of solutions of the physical model obtained on the fly.The parsimonious exploration of the parameter space coupled with the compact tensor train representation allows to alleviate the curse of dimensionality.The approach accommodates particularly well to models involving many parameters defined over large domains.The numerical results on nonlinear elasto-viscoplastic laws show that compact surrogate models in terms of memory storage that accurately predict multiple time dependent mechanical variables can be obtained at a low computational cost.The real-time response provided by the surrogate model for any parameter value allows the implementation of decision-making tools that are particularly interesting for experts in the context of parametric studies and aim at improving the procedure of calibration of material laws.

Page generated in 0.0817 seconds