• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Collaborative SLAM with Crowdsourced Data

Huai, Jianzhu 18 May 2017 (has links)
No description available.
2

Towards Visual-Inertial SLAM for Dynamic Environments Using Instance Segmentation and Dense Optical Flow

Sarmiento Gonzalez, Luis Alejandro January 2021 (has links)
Dynamic environments pose an open problem for the performance of visual SLAM systems in real-life scenarios. Such environments involve dynamic objects that can cause pose estimation errors. Recently, Deep Learning semantic segmentation networks have been employed to identify potentially moving objects in visual SLAM; however, semantic information is subject to misclassifications and does not yield motion information alone. The thesis presents a hybrid method that employs semantic information and dense optical flow to determine moving objects through a motion likelihood. The proposed approach builds over stereo- inertial ORBSLAM 3, adding the capability of dynamic object detection to allow a more robust performance in dynamic scenarios. The system is evaluated in the OpenLORIS dataset, which considers stereo-inertial information in challenging scenes. The impact of dynamic objects on the system’s performance is studied through the use of ATE, RPE and Correctness Rate metrics. A comparison is made between the original ORBSLAM 3, ORBSLAM 3 considering only semantic information and the hybrid approach. The comparison helps identify the benefits and limitations of the proposed method. Results suggest an improvement in ATE for the hybrid approach with respect to the original ORBSLAM 3 in dynamic scenes. / Dynamiska miljöer utgör ett öppet problem för prestanda för visuella SLAM-system i verkliga scenarier. Sådana miljöer involverar dynamiska objekt som kan orsaka uppskattningsfel vid positionering. Nyligen har djupinlärning med semantiska segmenteringsnätverk använts för att identifiera potentiellt rörliga objekt i visuellt SLAM; emellertid är semantisk information föremål för felklassificeringar och ger inte enskilt rörelseinformation. Avhandlingen presenterar en hybridmetod som använder semantisk information och tätt optiskt flöde för att bestämma rörliga föremål genom en rörlig sannolikhet. Det föreslagna tillvägagångssättet bygger på stereotröghet ORBSLAM 3 och lägger till möjligheten för dynamisk objektdetektering för att möjliggöra en mer robust prestanda i dynamiska scenarier. Systemet utvärderas i OpenLORIS dataset, som tar hänsyn till stereo-inertial information i utmanande scener. Dynamiska objekts inverkan på systemets prestanda studeras med hjälp av medelvärdet av translationsfelet (ATE), relativa positioneringsfelet (RPE) och korrekthetsfördelning (Correctness Rate). En jämförelse görs mellan den ursprungliga ORBSLAM 3, ORBSLAM 3 med endast semantisk information, samt hybridmetoden. Jämförelsen hjälper till att identifiera fördelarna och begränsningarna med den föreslagna metoden. Resultaten tyder på en förbättring av ATE för hybridmetoden i jämförelse med den ursprungliga ORBSLAM 3 i dynamiska scener.
3

An Observability-Driven System Concept for Monocular-Inertial Egomotion and Landmark Position Determination

Markgraf, Marcel 25 February 2019 (has links)
In this dissertation a novel alternative system concept for monocular-inertial egomotion and landmark position determination is introduced. It is mainly motivated by an in-depth analysis of the observability and consistency of the classic simultaneous localization and mapping (SLAM) approach, which is based on a world-centric model of an agent and its environment. Within the novel system concept - a body-centric agent and environment model, - a pseudo-world centric motion propagation, - and closed-form initialization procedures are introduced. This approach allows for combining the advantageous observability properties of body-centric modeling and the advantageous motion propagation properties of world-centric modeling. A consistency focused and simulation based evaluation demonstrates the capabilities as well as the limitations of the proposed concept. / In dieser Dissertation wird ein neuartiges, alternatives Systemkonzept für die monokular-inertiale Eigenbewegungs- und Landmarkenpositionserfassung vorgestellt. Dieses Systemkonzept ist maßgeblich motiviert durch eine detaillierte Analyse der Beobachtbarkeits- und Konsistenzeigenschaften des klassischen Simultaneous Localization and Mapping (SLAM), welches auf einer weltzentrischen Modellierung eines Agenten und seiner Umgebung basiert. Innerhalb des neuen Systemkonzeptes werden - eine körperzentrische Modellierung des Agenten und seiner Umgebung, - eine pseudo-weltzentrische Bewegungspropagation, - und geschlossene Initialisierungsprozeduren eingeführt. Dieser Ansatz erlaubt es, die günstigen Beobachtbarkeitseigenschaften körperzentrischer Modellierung und die günstigen Propagationseigenschaften weltzentrischer Modellierung zu kombinieren. Sowohl die Fähigkeiten als auch die Limitierungen dieses Ansatzes werden abschließend mit Hilfe von Simulationen und einem starken Fokus auf Schätzkonsistenz demonstriert.

Page generated in 0.0503 seconds