• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 37
  • 27
  • 17
  • 10
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 292
  • 61
  • 54
  • 44
  • 38
  • 33
  • 24
  • 23
  • 21
  • 20
  • 18
  • 18
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Void Formation and Mortality During Liquid Composite Molding

Turner, Jared Michael 12 December 2023 (has links) (PDF)
Within the high-performance composite manufacturing industry, there exists a need to improve the reliability of LCM (Liquid Composite Molding) manufacturing processes in producing composite parts that better approach the quality and consistency of pre-impregnated composite tapes that are cured in autoclaves with cost being a driving factor of this need. One obstacle to that end is the phenomenon of void formation during the LCM infusion processes. The formation of these voids through different mechanisms leads to composite parts with lower mechanical properties and consistency than their pre-impregnated autoclave cure counterparts. The objective of this research is to investigate the different mechanisms through which voids form during LCM processes as well as potential actions that can be taken to reduce the total percent volume of voids that form during the infusion. This research also aims to investigate the correlation of the void content observed at the tool-ply interface compared to the void content through the thickness of composite laminates. Finally, this research investigates the effect that chemical modification of the wettability of carbon fiber fabrics has on void formation during infusions.
62

Monotonic Plasticity-Damage and Fatigue Life Model Correlations on Aisi 4140 Steel

Gomez, Rodolfo Andres 11 August 2007 (has links)
A microstructure-based plasticity-damage model is used to predict the mechanical behavior of commercially available AISI 4140 steel. Monotonic tension, compression and torsion tests were performed to obtain the set of plasticity and damage constants required for model calibration. Then, tension tests on Bridgman notched specimens were undertaken to study the damage-triaxiality dependence. Three different notch radii generated different levels of triaxiality at the notch. The modeled triaxiality-damage correlation was validated with SEM fracture surface analysis. Stress-strain correlations under different strain rate and temperature testing conditions were also studied. Little influence of the strain rate was observed. A preliminary study in high-porosity LENS materials was later performed, with satisfactory stress-strain correlation at two different temperatures on tension tests. Finally, a multistage fatigue model was used to predict life in AISI 4140 steel. The goal was to create a baseline for future application of these mathematical models into LENS manufactured materials in component design
63

AN ANALYSIS OF INTERNAL VOIDS OF ORTHODONTIC ADHESIVES VIA MICRO-CT

Britton, Steven Todd January 2019 (has links)
Objectives: While bracket debonding has been explored through shear bond-strength tests with debonding linked to the type of material used, the technique of adhesive application, and contamination, the contribution of internal voids in orthodontic adhesives is unknown. Voids may result in fracture or bond-failure, either within the adhesive or at the tooth-adhesive-bracket interfaces. The aim of this thesis is to quantify the internal volumetric voids and bonding strength of three generations of bracket adhesives. Methods: Extracted third molars were bonded with three groups of orthodontic brackets including conventionally-pasted (CP), pre-coated (PC), or pre-coated flash-free (FF) (n=5 per group). The three-dimensional internal structure of the adhesive was evaluated with Micro Computed Tomography (micro-CT) using the Skyscan micro-CT (maximum resolution of 5 microns). Data from the micro-CT were analyzed with SkyScan software to perform 3D reconstructions, image processing, and qualitative and quantitative analysis of the adhesive’s structure. The amount of void was determined by measuring the percentage of voids at the bonded interfaces (Vint) and within the adhesive (Vbulk). The total amount of void was also calculated (Vtot= Vint+ Vbulk). Differences in void between the groups were assessed using one-way ANOVA with post-hoc Tukey tests (α=0.05). The bonding strength of the three adhesives systems was evaluated via shear bond strength tests. Results: Our void quantification results showed that FF brackets had a statistically higher (p0.05) for any the analyzed locations (Vint, Vbulk). Our results indicate the majority of voids were found at bonded interfaces (Vint) compared to within the bulk (Vbulk) for all three groups, with statistically significant (p<0.05) differences for CP and FF. Our bonding strength evaluation revealed the pre-coated group (PC) to have on average the highest bond strength compared to conventionally-pasted (CP) and pre-coated flash-free (FF) groups. Conclusions: The overall amount of void in the pre-coated flash-free adhesive brackets is significantly higher compared to conventionally-pasted and pre-coated groups. The majority of the void was identified to be located at the bonded interfaces (tooth/adhesive and bracket/adhesive) rather than within the bulk of the adhesive for all groups. Our bonding strength results indicate the pre-coated brackets to have the highest bond strength compared to pre-coated flash-free and conventionally-pasted. Our preliminary set of results indicate an inverse relationship between bonding strength and amount of void of brackets adhesives, with the pre-coated exhibiting the highest bond strength and least void. However, due to a limited sample size additional data are needed to validate these conclusions and find solid relationships between adhesive voids and bonding strength. / Oral Biology
64

Extending the Theory for the Primary Consolidation of Soils

Hwang, Chih Tsung 09 1900 (has links)
The classical Terzaghi Theory was extended by accounting for the variations of permeability during consolidation. With the aid of X-ray techniques, investigations on the significance of the variation of permeability, as well as the variations of void ratio and effective pressure, were conducted. Effects of the conventional consolidometer boundary on consolidation testing were studied. / Thesis / Master of Engineering (ME)
65

Analysis of Direct-Soldered Power Module / Heat Sink Thermal Interface for Electric Vehicle Applications

Kim, Junhyung 06 May 2001 (has links)
Reducing the thermal impedance between power module and heat sink is important for high-power density, low-cost inverter applications. Mounting a power module by directly soldering it onto a heat sink can significantly reduce the thermal impedance at the module / heat sink interface, as compared to the conventional method of bolting the two together with a thermal grease or some other interface materials in between. However, a soldered interface typically contains a large number of voids, which results in local hot spots. This thesis describes approaches taken to reduce voids in the solder layer through surface treatment, solder paste selection, and adjustment in solder-reflow conditions. A 15MHz scanning acoustic microscope (SAM), a non-destructive inspection tool, was used to determine the void content at the module / heat sink interface. The experimental results show that a significant reduction in thermal resistance can be achieved by reducing the void content at the soldered module / heat sink interface. Moreover, a comparison of the thermal resistances in cases using the worst soldering, which contains the largest voided area, ThermstrateTM and thermal grease are presented. Thermal performances of the modules are studied by simulation with Flotherm. / Master of Science
66

Excavation in Toronto

Zhang, Rong Christine January 1996 (has links)
This thesis is about silence; about emptiness; about absence. "Should we be surprised by the fact that architectural form can be found in the plan of the city? Yes, if one considers the fact that there is no architectural intervention in the design of the plan. No, if one considers architecture as not just the practice of a specific form of "writing", but primarily as an art of "reading." It is the "reading subject," the principle that generates the architecture of the city by displacing its plan to 'another' realm. The realm of the urban text." M. Gandelsonas "The Unconscious of the City" / Master of Architecture
67

Cement-based Materials' Characterization using Ultrasonic Attenuation

Punurai, Wonsiri 05 April 2006 (has links)
The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste - a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct relationship between attenuation and water to cement (w/c) ratio. A phenomenological model based on the existence of fluid-filled capillary voids is used to help explain the experimentally observed behavior. Overall this research shows the potential of using ultrasonic attenuation to quantitatively characterize cement paste. The absorption and scattering losses can be related to the individual microstructural elements of hardened cement paste. By taking a fundamental, mechanics-based approach, it should be possible to add additional components such as scattering by aggregates or even microcracks in a systematic fashion and eventually build a realistic model for ultrasonic wave propagation study for concrete.
68

Effects Of Bedding Void On Internal Moment Increase In Concrete Pipes

Kazma, Jad 01 January 2005 (has links)
Large diameter concrete pipes have been used in many areas of central Florida to carry pressured sewage flow. These pipes have been typically located at six feet below finished roadway elevation, and ranges in diameter from thirty six to sixty inches. The water table is typically located at shallow depth below finished roadway elevation, and generally fluctuates between five to ten feet depending on the relative roadway elevation to mean sea level. These pipes are under pressure when carrying the sewage flow, but return to normal atmospheric pressures when the flow stops. Since the water table encases most of the pipe circumference, no leaks is developed from the water table to the pipe when the pipe is under pressure. Once the pressure in the pipes returns to zero, the water starts seeping into the pipe while washing the subgrade with it into the pipe's interior. The subgrade washes into the pipe at the joint inverts between adjacent pieces of the pipe, since the invert is where the most tension exists in the joint under the weight of the soil and traffic loading above the pipe, making it the most probable location where a gap in the joint would form. This would cause the origination of a small void under the pipe, which creates pressure redistribution in the subgrade reaction under the pipe. As the void develops in the middle third of the bedding under the invert, pressure redistribution occurs to the outer two thirds of the bedding. As the stress increases in the outer portions of the bedding, more subgrade material is washed into the pipe when it is not under pressure, making the void larger. As the void becomes large, the moment in the pipe is greatly increased, and therefore the gap in the joint is increased due to the tension increase at the bottom of the pipe. More material is allowed into the pipe, and the void becomes deeper as fewer restrictions are encountered between the water table and the empty pipe. As the pipe becomes pressurized, more subgrade material is disturbed by the leak from the inside of the pipe to the outside, and void is constantly generated. The void then leads to the continuous settlement of the roadway. It is intended by this study to model the stresses in the subgrade around the pipe using a finite element software to determine the effects of void in the pipe's bedding on the stress around the pipe's outer perimeter. The stresses calculated as a result of the void will then be used in determining the increase in internal moment created in the pipe as the void is generated and became larger and deeper. Average stresses on the top and bottom of the pipe were calculated due to the soil profile dead load and live load caused by loading the soil profile with one and two HS-20 trucks. The average stresses were recalculated after the addition of void in the pipe bedding. The void width and depth were varied to come up with the case that would generate the highest unbalanced load on the pipe. The average bottom stress was subtracted from the average top stress to determine the unbalanced load on the pipe that would cause an internal moment in the pipe. At the most critical case, a forty kilo pounds per foot moment was caused by the existence of the void under the sixty inch diameter pipe used in the model. Such a moment is large to be resisted by either the pipe alone or the pipe reinforced by an additional structural support, unless such support is accompanied by void decrease and a mean to stop the subgrade from eroding into the pipe.
69

Single-Shot, Ultrafast, Multi-Frame X-Ray Imaging of Defect-Bearing Ablator Materials in Extreme Conditions

Hodge, Daniel S. 12 December 2022 (has links)
Characterization of the dynamic behavior of defect-bearing ablator materials subjected to extreme conditions is essential in advancing fusion energy as an reliable and abundant energy source. By understanding how materials evolve spatially and temporally we can minimize hydrodynamic instabilities, which are major contributing factors to energy yield degradation in inertial confinement fusion (ICF) experiments. In this thesis we demonstrate the capabilities of an ultrafast x-ray imaging (UXI) detector, the Icarus V2, where we capture multiple frames of single void-bearing sample compressed by a high-intensity laser shockwave. Using the Matter in Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS), we conducted two experiments with the x-ray free electron laser (XFEL) multi-pulse mode, delivering four nanosecond-separated pulses to a sample impacted by a laser shockwave, obtaining multiframe images of a single sample in the holographic and direct imaging regime with the UXI detector. In contrast to the low temporal resolution provided by current cameras, the Icarus V2 can capture images with high temporal resolution, which can be used to determine the mechanisms that prevent thermonuclear ignition in ICF experiments. For images captured in the holographic regime at our XFEL energy of 8.23 keV, we realized that the shock front was obscured by strong phase-contrast effects. We recognized that by increasing the XFEL energy while in the holographic regime, more distinguishable features could be revealed behind and along the shock front. Alternatively, in the direct-imaging configuration we discovered that the evolution of microstructural features were directly recognizable in comparison to the holographic regime at lower XFEL energies. Overall, the images captured by the UXI in both regimes demonstrated our ability to obtain multiframe images of processes that occur over several nanoseconds for single samples, which has never been done before. Moreover, the capabilities of the UXI enable extraction of quantitative information over multiple frames, which can help with uncovering the underlying physics involved in high energy density (HED) physics experiments and other experiments involving non-repeatable ultrafast phenomena. Specifically, insight into the behavior of the void can be gained by performing phase retrieval on the images and obtaining the areal density of the materials during laser-shock ablation. Generally, the UXI improves data acquisition speed and operational efficiency, which extends this camera's functionality to experiments that occur at various time scales or experiments that require multiple images to be captured.
70

Two-Dimensional Investigation of Void Growth and Coalescence during Deformation

Li, Jing 10 1900 (has links)
<p>Void growth and coalescence in a single layer model material with holes were visualized by the environmental electron scanning microscope coupled with in situ tensile test. Single sheet model materials were manufactured with a line of laser drilled holes through thickness. In order to investigate the effect of shear localization, the line of holes were oriented with the misorientation angle <em>θ </em>= 0°, 15°, 30°, and 45°. The α-brass samples were studied to introduce the work hardening effect in comparison with the pure copper samples.</p> <p>By taking images at intervals with small strain increments, the void growth behaviors were visualized during the interrupted tensile testing. The void coalescence (defined consistent with Hosokawa et al (2011), as the point at which the voids stopped shrinking laterally) was successfully captured for the first time in the two dimensional studies. The evolutions of void shape change and void rotation during deformation were also studied quantitatively. The results showed that the higher work hardening behaviors can suppress the void coalescence. It also showed that the effect of local volume fraction dominated the coalescence event rather than the void spacing and shear localization. A comparison of the classic models with the experimental results were also made.</p> / Master of Science in Materials Science and Engineering (MSMSE)

Page generated in 0.0261 seconds