Spelling suggestions: "subject:"voltagegated"" "subject:"voltagebased""
81 |
K⁺ channels in the inner ear : electrophysiological and molecular studies /Liang, Guihua, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
|
82 |
Mechanisms of long-term presynaptic plasticity at Schaffer-collateral synapsesPadamsey, Zahid January 2014 (has links)
Synaptic plasticity is thought to be integral to learning and memory. The two most common forms of plasticity are long-term potentiation (LTP) and long-term depression (LTD), both of which can be supported either by presynaptic changes in transmitter release probability (Pr), or by postsynaptic changes in AMPA receptor number. It is generally thought that the induction of LTP and LTD at Schaffer-collateral synapses in the hippocampus depends on the activation of NMDA receptors (GluN). Recent studies, however, have demonstrated that both increases and decreases in Pr can be induced under blockade of postsynaptic GluN receptors, suggesting that the activation of postsynaptic GluN receptors by glutamate is only a strict requirement for postsynaptic plasticity. In this thesis, I therefore re-examined the role of glutamate in presynaptic plasticity. I used single synapse imaging along with electrophysiological and pharmacological techniques to independently manipulate and monitor the levels of glutamatergic signalling during synaptic activity. I discovered that glutamate is inhibitory and unnecessary for the induction of LTP at the presynaptic locus. My findings support a novel model of presynaptic plasticity in which the net activity-dependent changes in Pr at an active presynaptic terminal is jointly determined by two opposing processes that can be simultaneously active: 1) postsynaptic depolarization, which, via the activation of L-type voltage-gated Ca<sup>2+</sup> channels, increases Pr by driving the synthesis and release of nitric oxide from neuronal dendrites and 2) glutamate release, which through the activation of presynaptic GluN receptors, decreases Pr. Computationally, this model suggests that plasticity functions to reduce prediction-errors that arise during synaptic activity, and, thereby offers a biologically plausible mechanism by which neuronal networks may optimize learning at the level of single synapses.
|
83 |
Rôle du canal sodique NaV1.5 et de la sous-unité auxiliaire β4 dans l’invasivité des cellules cancéreuses mammaires in vitro et in vivo / Role of voltage-gated sodium channel NaV1.5 and β4 auxiliary subunit in the in vitro and in vivo breast cancer cells invasivenessDriffort, Virginie 24 November 2014 (has links)
L’expression anormale du canal sodique Nav1.5 dans le cancer du sein est corrélée au développement métastatique et à une mortalité augmentée. Le canal Nav1.5 est localisé dans les invadopodes des cellules cancéreuses mammaires humaines MDA-MB-231 et augmente leur activité protéolytique par une modulation allostérique de l’échangeur NHE-1 et l’activation de protéases acides. In vivo, dans un modèle de xénogreffe sur souris NMRI nude, l’expression de Nav1.5 potentialise la colonisation des poumons par les cellules cancéreuses mammaires humaines. Cette colonisation métastatique est inhibée par un traitement à la ranolazine, un inhibiteur pharmacologique des canaux Nav1.5. La sous-unité β4, auxiliaire des canaux Nav, voit son expression diminuer au cours de la progression cancéreuse, ce qui est associé in vitro à une augmentation de l’invasivité cellulaire. Cette augmentation d’invasivité semble indépendante du canal Nav1.5 et pourrait être associée à une transition des cellules vers un phénotype amiboïde. En conclusion, l’expression de Nav1.5 et la perte d’expression de β4 semblent jouer des rôles complémentaires dans l’invasivité des cellules cancéreuses. / The abnormal expression of sodium channel Nav1.5 in breast cancer is correlated with metastatic development and an increased mortality. The Nav1.5 channel is located in invadopodia in human breast cancer cells MDA-MB-231, where it increases proteolytic activity by allosteric modulation of exchanger NHE-1 and activation of acidic proteases. In vivo, in a xenograft model in nude NMRI mice, the expression of Nav1.5 potentiates lung colonization by human breast cancer cells. Metastatic colonization is inhibited by treatment with ranolazine, a pharmacological inhibitor of Nav1.5. The β4 subunit, an auxiliary subunit of Nav channels, is expressed at low levels or lost when tumors are more aggressive, and its suppression in vitro increases celI invasiveness. This increase seems to be independent of Nav1.5 and could be associated with the transition of cells to an amoeboid phenotype. In conclusion, Nav1.5 expression and the loss of β4 expression seem to play complementary roles in the invasiveness of cancer cells.
|
84 |
Modulation de l'échangeur Na+/H+ de type 1 (NHE1) par le canal sodique dépendant du voltage Nav1.5 : implication dans l'invasivité de cellules cancéreuses mammaires humaines / Modulation of type 1 Na+/H+ exchanger (NHE1) by Nav1.5 voltage-gated sodium channel : involvement in human breast cancer cells invasivenessBrisson, Lucie 19 October 2012 (has links)
Les cellules cancéreuses mammaires invasives expriment des canaux sodiques NaV1.5 dont l’activité semble être associée au développement métastatique. L’activité de ce canal dans les cellules MDA-MB-231 conduit à une acidification péricellulaire favorable à l’activité des cathepsines à cystéine B et S extracellulaires et à la dégradation de la matrice extracellulaire. Au cours de cette thèse, nous avons montré que l’échangeur NHE1 est le principal régulateur du pH des cellules MDA-MB-231 et que l’activité du canal NaV1.5 augmente l’activité d’efflux de protons par NHE1 vraisemblablement par modulation allostérique. NaV1.5 et NHE1 sont co-localisés dans des radeaux lipidiques et plus particulièrement dans les invadopodes des cellules MDA-MB-231. Les activités de NHE1 et NaV1.5 stimulent l’activité protéolytique des invadopodes. Enfin, l’activité du canal NaV1.5 semble moduler le cytosquelette et la morphologie des cellules cancéreuses MDA-MB-231 pour leur donner un phénotype invasif. En conclusion, NaV1.5 augmente l’activité de NHE1 dans les invadopodes stimulant ainsi l’invasivité des cellules cancéreuses mammaires. / Invasive breast cancer cells express NaV1.5 sodium channels which activity seems to be associated with metastatic progression. The activity of the channel in MDA-MB-231 cells leads to a pericellular acidification favourable for the activity of extracellular cysteine cathepsins B and S and for extracellular matrix degradation. During this thesis, we have shown that NHE1 exchanger is the main pH regulator in MDA-MB-231 cells and that the activity of NaV1.5 channels increases protons efflux activity of NHE1 possibly through allosteric modulation. NaV1.5 and NHE1 are co-localised in lipid rafts and in invadopodia of MDA-MB-231 cells. The activity of NHE1 and NaV1.5 promotes the proteolytic activity of invadopodia. Finally, the activity of NaV1.5 channels seems to modulate cytoskeleton and morphology of MDA-MB-231 cancer cells to promote the acquisition of a proinvasive phenotype. In conclusion NaV1.5 increases NHE1 activity in invadopodia to stimulate breast cancer cells invasiveness.
|
85 |
Charakterisierung der Aktivität und Inhibition des rekombinanten, spannungsgesteuerten Protonenkanals HV1: Funktionelle Rekonstitution in unilamellare Vesikel / Characterisation of activation and inhibition of the recombinant voltage-gated proton channel Hv1: functional reconstitution in unilamellare vesiclesGerdes, Benjamin 08 December 2017 (has links)
No description available.
|
86 |
Molekulárně dynamické simulace iontového kanálu TRPA1 / Molecular dynamics simulations of ion channel TRPA1Zíma, Vlastimil January 2018 (has links)
Title: Molecular dynamics simulations of ion channel TRPA1 Author: Mgr. Vlastimil Zíma Institute: Institute of Physics of Charles University Supervisor: RNDr. Ivan Barvík, PhD., Institute of Physics of Charles Uni- versity Abstract: The ion channel TRPA1 is one of the members of the transient receptor potential channel family. These channels have recently been an im- portant objective of research, because they play important roles in various cellular processes and organismic mechanisms. Especially they are involved in most of the senses. We focused mainly on the TRPA1 ion channel due to its involvement in the pain sensation in humans. Because the molecular mechanisms behind the gating of this channel are not fully understood, their description is a key for a design of new analgesics targeting this channel. We used a homology modeling and molecular dynamics simulations in conjunc- tion with electrophysiological experiments to provide a valuable new insight into the channel mechanisms. We contributed by describing of a putative binding site for calcium ions. Further, many functionally important amino acids were found in the S1-S4 transmembrane domain. Keywords: voltage-gated ion channel, TRPA1 channel, molecular dynamics, homology modeling 1
|
87 |
Effect of KCNE1 and KCNE3 Accessory Subunits on KCNQ1 Potassium Channel Function: A DissertationRocheleau, Jessica Marie 02 December 2008 (has links)
The KCNE1 and KCNE3 type I transmembrane-spanning β-subunits assemble with the KCNQ1 voltage-gated K+ channel to afford membrane-embedded complexes with dramatically different properties. Assembly with KCNE1 produces the very slowly activating and deactivating IKs current that shapes the repolarization phase of cardiac action potentials. Genetic mutations in KCNQ1 or KCNE1 that reduce IKs current cause long QT syndrome and predispose affected individuals to potentially fatal cardiac arrhythmias. In contrast, complexes formed between KCNQ1 and KCNE3 produce rapidly activating and mostly voltage-independent currents, properties that are essential for function in K+ recycling and Cl−secretion in gastrointestinal epithelia.
This thesis addresses how these two homologous accessory peptides impart their distinctive effects on KCNQ1 channel gating by examining two important protein regions: 1) a conserved C-terminal motif in the β-subunits themselves, and 2) the voltage sensing domain of KCNQ1 channels.
Sequences in both the transmembrane domain and C-terminus of KCNE1 and KCNE3 have been identified as contributing to the divergent modulatory effects that these β-subunits exert. The homology of transmembrane-abutting C-terminal residues within the KCNE family and the presence of long QT-causing mutations in this region highlight its importance. A bipartite model of modulation was proposed that suggests the transmembrane domain of KCNE1 is passive, allowing the C-terminal domain to control modulation. Chapter II builds on this model by investigating the effect of mutating specific amino acids in the KCNE1 C-terminal domain. Point mutants that produce ‘high impact’ perturbations in gating were shown to cluster in a periodic fashion, suggesting an alpha-helical secondary structure that is kinked by a conserved proline residue and interacts with the Q1 channel complex.
In Chapter III, the voltage sensing domain of Q1 channels is examined in the presence of either KCNE1 or KCNE3. To determine the influence of these two peptides on voltage sensing, the position of the S4 voltage sensor was monitored using cysteine accessibility experiments. In the slowly opening KCNQ1/KCNE1 complexes, voltage sensor activation appears to occur much faster than the onset of current, suggesting that slow channel activation is not due to slowly moving voltage sensors. KCNE3, on the other hand, shifts the voltage sensor equilibrium to favor the active state, producing open channels even at negative voltages.
Taken together, these findings provide mechanistic detail to illustrate how two homologous peptides radically alter the gating properties of the same K+ channel and present a structural scaffold to map protein-protein interactions.
|
88 |
Diversité des mécanismes de stabilisation du segment initial de l'axoneMontersino, Audrey 05 December 2013 (has links)
Le segment initial de l’axone (SIA) est un sous-domaine fonctionnel du neurone localisé dans l’axone proximal, qui assure deux fonctions : l’initiation du potentiel d’action et le maintien de l’identité axonale. Le maintien et la stabilité du SIA sont des éléments fondamentaux de l’excitabilité du neurone et la nature dynamique de l’organisation fonctionnelle du SIA a été mise en évidence. Les objectifs de mes travaux de thèse ont été d’étudier les mécanismes responsables du maintien du SIA, en condition physiologique ou pathologique et d’identifier de nouveaux acteurs impliqués dans ces mécanismes. Dans un premier temps, nous avons identifié et caractérisé l’expression d’une nouvelle protéine au SIA : la protéine Scrib1. En utilisant une approche par ARN interférent nous avons montré que Scrib1 est nécessaire au maintien de la morphologie du SIA. Les conséquences fonctionnelles de l’absence de Scrib1 sont une diminution de l’excitabilité neuronale. Dans un second temps, nous nous sommes intéressés aux mécanismes pouvant être à l’origine de l’expression ectopique du canal Nav1.8 observée dans certaines pathologies démyélinisantes. Nous avons montré que Nav1.8 possède un site d’interaction à l’ankyrine G. Ce motif d’interaction est suffisant pour adresser un canal chimérique au SIA et perturber l’expression des Nav1 endogènes. A l’inverse des Nav1 du système nerveux central, l’interaction entre Nav1.8 et l’ankyrine G n’est pas régulée par la CK2. Cette interaction constitutive entre Nav1.8 et l’ankyrine G pourrait expliquer son expression ectopique dans le système nerveux central. / The axonal initial segment (AIS) is a unique sub-domain that plays a central role in the physiology of the neuron, as it orchestrates both electrogenesis and the maintenance of neuronal polarity. The maintenance and the stability of the AIS after assembly ensure a reliable generation of action potentials. However, new mechanisms affecting AIS protein-protein interaction and composition have been shown to modulate the electrogenesis of the neuron. Moreover, recent findings highlight that the AIS is capable of homeostatic plasticity through an activity–dependent change either in its location along the proximal axon or in its length. The objectives of my thesis were to study the mechanisms responsible for AIS maintenance in physiological or pathological condition and to identify new players involved in these mechanisms.First we identified and characterized the expression of a novel protein in AIS: the protein Scrib1. Using an shRNA approach we showed that Scrib1 is necessary to maintain the AIS morphology. The functional consequence of the absence of Scrib1 is a decreased of neuronal excitability.Second, we are interested in the mechanisms that cause the ectopic expression of Nav1.8 channel observed in demyelinating diseases. We found that Nav1.8 constitutively interacts with ankG in contrast to Nav1.2, which requires CK2 phosphorylation to bind ankG. Furthermore, when Nav1.8 ankyrin-binding domain was expressed in hippocampal neuron, it clustered at the AIS where it acted as a dominant negative for endogenous Nav1. This constitutive interaction between Nav1.8 and ankG could explain the ectopic expression of Nav1.8 in the central nervous system.
|
89 |
Implication des canaux sodium voltage-dépendant dans la réponse aux toxines chez Crassostrea gigas : le cas des phycotoxines paralysantes / Involvement of the voltage-gated sodium channels in the response to toxins in Crassostrea gigas : the case of paralytic shellfish toxinsBoullot, Floriane 08 February 2017 (has links)
Lors des efflorescences de micro-algues productrices de toxines paralysantes (PST), les bivalves filtreurs peuvent bioaccumuler une grande quantité de toxines et devenir à leur tour toxiques, notamment pour l’homme. La quantité de toxines PST accumulée d’un individu à l’autre s’avère être très variable au sein même d’une population de bivalves. Ainsi, dans nos conditions expérimentales, la quantité de PST accumulées par des huîtres creuses, Crassostrea gigas, d’un même lot, exposées au dinoflagellé toxique Alexandrium minutum, variait d’un facteur 450. L’origine de cette variabilité est inconnue jusqu’alors mais l’une des hypothèses pour l’expliquer serait l’existence de plusieurs formes de canaux sodium voltage-dépendant (NaV), cible des PST, qui confèreraient aux bivalves des sensibilités différentes aux PST. L’objectif principal de cette thèse était de comprendre s’il existe une sensibilité individuelle aux PST différente entre les huîtres et si cette variabilité pouvait être due à des formes différentes de NaV.Une première partie a permis de caractériser le NaV chez C. gigas par une approche de biologie moléculaire. Deux gènes NaV ont été mis en évidence chez C. gigas : CgNaV1, codant un canal sodium et CgNaV2 codant un canal potentiellement sélectif du sodium et du calcium. L’épissage alternatif de CgNaV1 produits trois variants (A, B et C) avec des profils d’expression différents : au niveau des jonctions neuromusculaires pour CgNaV1A, dans les cellules nerveuses pour CgNaV1B et dans les deux pour CgNaV1C. L'acide aminé Q, observé dans le site de liaison aux PST (domaine II) de la séquence CgNaV1 pour les 3 variants et chez tous les individus des 4 populations étudiées, pourrait conférer aux huîtres une certaine résistance aux PST. Ainsi, les variants issus du génotypage/épissage de CgNaV1 ne seraient donc pas le point déterminant du niveau de bioaccumulation des huîtres.Une deuxième partie a permis d’étudier la sensibilité aux PST des nerfs de l’huître creuse C.gigas en relation avec l’accumulation de PST par une approche d’électrophysiologie. La sensibilité à la STX des nerfs cérébroviscéraux d'huîtres a été évaluée en étudiant leur potentiel d'action (CNAP).Il a été montré que les nerfs de C. gigas possédaient une sensibilité à la STX de l’ordre du micromolaire, ce qui leur confère une sensibilité intermédiaire parmi les bivalves. Cette sensibilité des nerfs peut varier selon la période à laquelle les huîtres ont été prélevées et potentiellement selon leur condition physiologique. Une pré-exposition des huîtres à A. minutum semble augmenter la résistance des nerfs à la STX. Cependant, aucune corrélation significative n'a été observée entre la sensibilité nerveuse à la STX et la charge en PST dans la glande digestive des huîtres.Il apparait donc que la variabilité de l’accumulation des PST par les huîtres résulterait plutôt d’une plasticité physiologique, en terme de filtration, d’ingestion et d’assimilation, que d’une sensibilité différentielle des NaV. / During bloom of microalgae producing paralytic shellfish toxins (PST), filtering bivalves can bio-accumulate a large quantity of toxins and become toxic for human consumption. The amount of accumulated PST can greatly vary from one individual to another within a bivalve population. Indeed, under our experimental conditions, the amount of accumulated PST by Pacific oysters, Crassostrea gigas, exposed to the toxic dinoflagellate Alexandrium minutum, varied by a factor of 450. To explain such variability we hypothesized the existence of several forms of voltage-gated sodium channel (NaV), target of the PST, resulting in different sensitivities to PST. The main objective of this thesis was to understand whether there are relationships between nerve sensitivity to PST, the different forms of NaV and the amount of accumulated PST.The NaV was first characterized in C. gigas by a molecular biology approach. Two NaV genes were reported in C. gigas: CgNaV1, encoding a sodium channel and CgNaV2 encoding a channel potentially selective for sodium and calcium. Alternative splicing of CgNaV1 produced three variants (A, B and C) with different expression profiles: at the neuromuscular junctions for CgNaV1A, in the nerve cells for CgNaV1B and in both for CgNaV1C. The amino acid Q observed in the binding site of PST (domain II), of the sequence CgNaV1 for the 3 variants and in all individuals from the 4 studied populations possibly provide some PST resistance to oysters. Thus, the variants resulting from the genotyping/splicing of CgNaV1 would not therefore be the determining factor of the level of bioaccumulation in oysters.A second part allowed studying the nerve sensitivity to PST of C. gigas oyster in relation to the accumulation of PST by an electrophysiology approach. The sensitivity to saxitoxin (STX, a PST) of the cerebro-visceral nerves from oysters was assessed by studying their action potential (CNAP). C.gigas nerves have been shown to have sensitivity to STX of the micromolar range, which gives them intermediate sensitivity among bivalves. This nerve sensitivity may vary depending on the period at which the oysters were collected and potentially according to their physiological condition. A preexposure of oysters to A. minutum appears to increase nerve resistance to STX. However, there was no significant correlation between STX nerve sensitivity and PST content in the oyster digestive gland.Overall, it appears that the variability of the PST accumulation by oysters would result rather from a physiological plasticity, in terms of filtration, ingestion and assimilation, than from a differential sensitivity of the NaV.
|
90 |
Novel tricycloundecane derivatives as potential N-methyl-Daspartate receptor and calcium channel inhibitors for neuroprotectionEgunlusi, Ayodeji Olatunde January 2014 (has links)
>Magister Scientiae - MSc / This study focused on the synthesis of a series of novel tricycloundecane derivatives and evaluation of these compounds for neuroprotection using the fluorescent ratiometric calcium assay that indicates the ability of the test compounds to inhibit NMDA receptors and VGCC. The cycloaddition reaction between p-benzoquinone and monomerised dicyclopentadiene yielded tricycloundeca- 4,9-diene-3,6-dione which was used as the base structure and further derivatised. These derivatives were conjugated with benzylamine to form a series of imines and amines. A total of 10 compounds were synthesised for evaluation of inhibition of calcium influx through NMDA receptor channels and voltage-gated calcium channels. The structures were confirmed using NMR, IR and MS. On the proton NMR, the characteristic AB-quartet system was observed in the region of 1-2 ppm for all the compounds and the aromatic moiety was observed between 6.5-7.5 ppm for the novel polycyclic amines. These, with other functional groups, were used to confirm the individual structures
|
Page generated in 0.0596 seconds