Spelling suggestions: "subject:"voltagegated"" "subject:"voltagebased""
41 |
Cardiac sodium channel palmitoylation regulates channel function and cardiac excitability with implications for arrhythmia generationPei, Zifan 09 December 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The cardiac voltage-gated sodium channels (Nav1.5) play a specific and critical role in regulating cardiac electrical activity by initiating and propagating action potentials in the heart. The association between Nav1.5 dysfunctions and generation of various types of cardiac arrhythmia disease, including long-QT3 and Brugada syndrome, is well established. Many types of post-translational modifications have been shown to regulate Nav1.5 biophysical properties, including phosphorylation, glycosylation and ubiquitination. However, our understanding about how post-translational lipid modification affects sodium channel function and cellular excitability, is still lacking. The goal of this dissertation is to characterize Nav1.5 palmitoylation, one of the most common post-translational lipid modification and its role in regulating Nav1.5 function and cardiac excitability. In our studies, three lines of biochemistry evidence were shown to confirm Nav1.5 palmitoylation in both native expression background and heterologous expression system. Moreover, palmitoylation of Nav1.5 can be bidirectionally regulated using 2-Br-palmitate and palmitic acid. Our results also demonstrated that enhanced palmitoylation in both cardiomyocytes and HEK293 cells increases sodium channel availability and late sodium current activity, leading to enhanced cardiac excitability and prolonged action potential duration. In contrast, blocking palmitoylation by 2-Br-palmitiate increases closed-state channel inactivation and reduces myocyte excitability. Our computer simulation results confirmed that the observed modification in Nav1.5 gating properties by protein palmitoylation are adequate for the alterations in cardiac excitability. Mutations of potential palmitoylation sites predicted by CSS-Palm bioinformatics tool were introduced into wild-type Nav1.5 constructs using site-directed mutagenesis. Further studies revealed four cysteines (C981, C1176, C1178, C1179) as possible Nav1.5 palmitoylation sites. In particular, a mutation of one of these sites(C981) is associated with cardiac arrhythmia disease. Cysteine to phenylalanine mutation at this site largely enhances of channel closed-state inactivation and ablates sensitivity to depalmitoylation. Therefore, C981 might be the most important site that regulates Nav1.5 palmitoylation. In summary, this dissertation research identified novel post-translational modification on Nav1.5 and revealed important details behind this process. Our data provides new insights on how post-translational lipid modification alters cardiomyocyte excitability and its potential role in arrhythmogenesis.
|
42 |
Voltage-Gated Sodium Channel Nav1.6 S-Palmitoylation Regulates Channel Functions and Neuronal ExcitabilityPan, Yanling 04 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The voltage-gated sodium channels (VGSCs) are critical determinants of
neuronal excitability. They set the threshold for action potential generation. The
VGSC isoform Nav1.6 participates in various physiological processes and
contributes to distinct pathological conditions, but how Nav1.6 function is
differentially regulated in different cell types and subcellular locations is not
clearly understood. Some VGSC isoforms are subject to S-palmitoylation and
exhibit altered functional properties in different S-palmitoylation states. This
dissertation investigates the role of S-palmitoylation in Nav1.6 regulation and
explores the consequences of S-palmitoylation in modulating neuronal excitability
in physiological and pathological conditions.
The aims of this dissertation were to 1) provide biochemical and
electrophysiological evidence of Nav1.6 regulation by S-palmitoylation and
identify specific S-palmitoylation sites in Nav1.6 that are important for excitability
modulation, 2) determine the biophysical consequences of epilepsy-associated
mutations in Nav1.6 and employ computational models for excitability prediction
and 3) test the modulating effects of S-palmitoylation on aberrant Nav1.6 activity
incurred by epilepsy mutations.
To address these aims, an acyl-biotin exchange assay was used for Spalmitoylation
detection and whole-cell electrophysiology was used for channel
characterization and excitability examination. The results demonstrate that 1)
Nav1.6 is biochemically modified and functionally regulated by S-palmitoylation in
an isoform- and site-specific manner and altered S-palmitoylation status of the
channel results in substantial changes of neuronal excitability, 2) epilepsy associated Nav1.6 mutations affect different aspects of channel function, but may
all converge to gain-of-function alterations with enhanced resurgent currents and
increased neuronal excitability and 3) S-palmitoylation can target specific Nav1.6
properties and could possibly be used to rescue abnormal channel function in
diseased conditions. Overall, this dissertation reveals S-palmitoylation as a new
mechanism for Nav1.6 regulation. This knowledge is critical for understanding
the potential role of S-palmitoylation in isoform-specific regulation for VGSCs and
providing potential targets for the modulation of excitability disorders. / 2022-05-06
|
43 |
Fast Voltage-Gated Sodium Channel Currents and Action Potential Firing in R6/2 Skeletal MuscleReed, Eric Joshua January 2018 (has links)
No description available.
|
44 |
Investigating the Dynamic Properties and Structural Topology of Membrane Protein KCNE3 with EPR SpectroscopyMohammed Faleel, Fathima Dhilhani 23 July 2019 (has links)
No description available.
|
45 |
"Mechanisms of Adrenal Medullary Excitation Under the Acute Sympathetic Stress Response"Hill, Jacqueline Suzanne 27 August 2012 (has links)
No description available.
|
46 |
The Organization of Kv2.1 ChannelProteins in the Membrane of Spinal Motoneurons:Regulation by Injury and Cellular ActivityRomer, Shannon Hunt 07 May 2015 (has links)
No description available.
|
47 |
RESPONSE OF BONE CELLS TO DIFFUSE MICRODAMAGE INDUCED CALCIUM EFFLUXJung, Hyungjin 06 September 2017 (has links)
No description available.
|
48 |
INVESTIGATING THE MODULATION OF VOLTAGE-GATED SODIUM CHANNEL NAV1.1 NEURONAL EXCITABILITY BY FIBROBLAST GROWTH FACTOR HOMOLOGOUS FACTOR 2 AND IL-6Ashley Marie Frazee (17483721) 03 January 2024 (has links)
<p dir="ltr">Migraine is a condition that has affected many for generations and yet remains poorly understood. Mutations to the Na<sub>v</sub>1.1 voltage gated sodium channels have been implicated in various diseases such as Familial Hemiplegic Migraine 3 (FHM3), epilepsy, and autism spectrum disorder (ASD). Various proteins have been found to modify the function of these channels. Fibroblast growth factor homologous factors (FHFs) have been found to regulate the activity of some voltage-gated sodium channels (Na<sub>v</sub>s). More work is needed to determine which FHFs affect which Na<sub>v</sub>s. Here I looked at FHF2A and FHF2B in Nav1.1 as well as an FHM3-causing mutation to this channel, F1774S. I found that FHF2A, but not 2B, induced long-term inactivation (LTI) in the wild-type (WT) Nav1.1 and that FHF2A induced LTI in the F1774S mutant channel to a greater extent. Several changes in channel function caused by the mutation were attenuated with the addition of FHF2A, including persistent currents, leading to a possible rescue in the mutant phenotype. By contrast, the P1894L mutation, which has been found to cause ASD, greatly attenuated LTI and other impacts of FHF2A on Nav1.1. The inflammatory cytokine IL-6 was also investigated as a possible modulator of the Na<sub>v</sub>1.1 channel. There does not appear to be any direct interaction between this cytokine and the channel. Overall, my data shows for the first time that FHF2A, but FHF2B or IL-6, might be a significant modulator of Nav1.1 and can differentially modulate disease mutations.</p>
|
49 |
MICRORNA AND mRNA EXPRESSION PROFILES OF THE FAILING HUMAN SINOATRIAL NODEArtiga, Esthela J. January 2020 (has links)
No description available.
|
50 |
Adaptive evolution, sex-linkage, and gene conversion in the voltage-gated sodium channels of toxic newts and their snake predatorsGendreau, Kerry 27 May 2022 (has links)
Understanding how genetic changes ultimately affect morphology and physiology is essential for understanding and predicting how organisms will adapt to environmental changes. Although most traits are complex and involve the interplay of many different genetic loci, some exceptions exist. These include the convergent evolution of tetrodotoxin resistance in snakes, which has a simple genetic basis and can be used as a model system to investigate the genetic basis of adaptive evolution. Tetrodotoxin is a potent neurotoxin used as a chemical defense by various animals, including toxic newts. Snakes have evolved resistance through mutations in voltage-gated sodium channels, the protein targets of tetrodotoxin, sparking an evolutionary arms race between predator and prey. In this dissertation, I describe how genomic rearrangements have led to sex-linkage of four of the voltage-gated sodium channel genes in snakes and compare allele frequencies across populations and sexes to make inferences about how sex linkage has influenced the evolution of resistance in garter snakes. By measuring gene expression in different snake tissues, I show that three of these sex-linked sodium channel genes are dosage compensated in embryos, adult muscle, and adult brain. In contrast, two channels show sexual dimorphism in their expression levels in the heart, which may indicate differences in dosage compensation among tissues. I then use comparative genomics to track the evolutionary history of tetrodotoxin resistance across all nine sodium channel genes in squamate reptiles and show how historical changes have paved the way for full-body resistance in certain snakes. Finally, I use targeted sequence capture to obtain the sodium channel sequences of salamanders and show evidence that tetrodotoxin self-resistance in toxic newts was likely accelerated through gene conversion between resistant and non-resistant sodium channel paralogs. Together, these results illustrate parallelism in evolutionary mechanisms and processes contributing to the appearance of an extreme and complex trait that arose independently in two distinct taxa separated by hundreds of millions of years. / Doctor of Philosophy / Western North America is the site of an ongoing battle between highly toxic species of salamanders (toxic newts) and their garter snake predators. In certain regions, garter snakes have countered newt defenses by evolving resistance to their toxins, and the newts have become more toxic in response. This interaction has been the focus of scientists for decades because it teaches us about the ways in which animals can respond to changes in their environment. In living organisms, DNA is used a blueprint to determine the ultimate traits that are expressed (e.g., whether an organism will have five fingers or four, or whether it will be resistant or sensitive to a toxin). By comparing DNA sequences of different life forms, we are beginning to understand the rules that determine how these blueprints are read and how they can change over time. Because life is built upon the same basic building blocks (DNA, mRNA, and proteins), information about this snake-newt system can be used to understand the way that other systems, such as humans and pathogens, might interact. In my dissertation, I compare DNA sequences from snakes and lizards to identify the history of changes leading to the extreme toxin resistance in the garter snakes. I show that toxin resistance began hundreds of millions of years ago, with all lizards having a low baseline level of resistance, and that resistance built up slowly in the lineages leading to garter snakes. I also show that because of DNA rearrangements, female snakes have fewer copies of some of the genes involved in resistance, and this may have led to differences among the sexes. Lastly, I compare DNA sequences among salamanders, revealing a similar pattern to that in snakes and lizards. Specifically, newts have evolved self-resistance to their own toxin, and this has happened gradually over hundreds of millions of years, with all salamanders having some toxin resistance. I also show that an unusual process occurred within the DNA of toxic newts, resulting in a rapid change from toxin sensitivity to toxin resistance in some genes. Taken together, this work helps advance our understanding of the processes and limitations that determine how organisms can function and change over time.
|
Page generated in 0.06 seconds