• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 11
  • 10
  • 6
  • 2
  • 2
  • 2
  • Tagged with
  • 119
  • 119
  • 69
  • 55
  • 43
  • 33
  • 29
  • 27
  • 16
  • 15
  • 14
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Calcium Alleviates Symptoms in Hyperkalemic Periodic Paralysis by Reducing the Abnormal Sodium Influx

DeJong, Danica 02 November 2012 (has links)
Hyperkalemic periodic paralysis, HyperKPP, is an inherited progressive disorder of the muscles caused by mutations in the voltage gated sodium channel (NaV1.4). The objectives of this thesis were to develop a technique for measurement symptoms in vivo using electromyography (EMG) and to determine the mechanism by which Ca2+ alleviates HyperKPP symptoms, since this is unknown. Increasing extracellular [Ca2+] ([Ca2+]e) from 1.3 to 4 mM did not result in any increases in45Ca2+ influx suggesting no increase in intracellular [Ca2+] ([Ca2+]i) acting on an intracellular signaling pathway or on an ion channel such as the Ca2+sensitive K+ channels. HyperKPP muscles have larger TTX-sensitive22Na+ influx than wild type muscles because of the defective NaV1.4 channels. When [Ca2+] was increased from 1.3 to 4 mM, the abnormal 22Na+ influx was completely abolished. Thus, one mechanism by which Ca2+alleviates HyperKPP symptoms is by reducing the abnormal Na+ influx caused by the mutation in the NaV1.4 channel.
12

Unconventional forms of synaptic plasticity in the hippocampus and the striatum

Liu, Zhi 11 1900 (has links)
Synaptic transmission occurs as a result of either a spontaneous release of presynaptic vesicles or a batch release of presynaptic vesicles driven by action potentials. The physiological consequence of synaptic transmission driven by different patterns and frequencies of presynaptic stimulation has been extensively investigated. However, the physiological nature, mechanism as well as relevance of prolonged presynaptic stimulation have been poorly characterized. In this dissertation, I present three projects in which prolonged stimulation of synaptic transmission in different forms and different brain regions was studied for its effect on synaptic transmission, mechanisms and physiological relevance. In the first project, prolonged electrical stimulation (100 sec) at high frequency induced a deep synaptic depression in acute hippocampal slices, followed by a recovery of synaptic transmission after ~15 min. The deep synaptic depression was attributed to a complete depletion of presynaptic vesicle pools. In the second project, attempts were made to characterize the mechanism of nuclear activation of gene transcription induced by prolonged electrical stimulation (100 sec). Our results demonstrated that reduced inactivation of non-L-type calcium channels failed to provide calcium required for gene transcription, leaving the activation of gene transcription a selective function for L-type calcium channels. In the third project, we sought to study the physiological relevance of enhanced miniature events of inhibitory synapses induced by prolonged chemical stimulation. We showed that prolonged application (2 min) of nicotine to the striatal slice enhanced the frequency of miniature inhibitory currents that was accompanied with a reduction in the amplitude of evoked response. This reduction in the amplitude of evoked responses was ascribed to a compromised action potential invasion of presynaptic terminals possibly due to inactivation of sodium channels resulting from nicotine-induced depolarization. To summarize, prolonged stimulation of presynaptic vesicle release imposes significant influence upon neuron-to-neuron communication, with distinct mechanisms in different brain regions.
13

Role of Sialylation in the Nervous System Development of Drosophila melanogaster

Repnikova, Elena Aleksandrovna 2009 August 1900 (has links)
The sialyltransferase family is a group of enzymes that transfer sialic acid from donor CMP-Neu5Ac onto suitable carbohydrate chains of glycoproteins and glycolipids. In vertebrates, sialylation is implicated in many physiological and pathobiological processes, including nervous and immune system development and functioning, pathogen-host interaction, cancer cell proliferation and apoptosis. However, the complexity of the sialylation pathway and limitation of genetic and in vivo approaches interferes with functional analyses in mammalian organisms. We use Drosophila because of its simplified physiology and reduced genetic redundancy to characterize the evolutionarily conserved function of sialylation and to reveal its relationship to the role of sialic acids in humans. This dissertation focuses primarily on Drosophila sialyltransferase, DSIAT, so far the only sialyltransferase described in protostomes. Gene targeting of the DSIAT endogenous locus with a DSIAT-HA tagged version uncovered its remarkably dynamic stage- and cell-specific expression. I found that the expression of DSIAT is developmentally regulated and is restricted to motor neurons and cholinergic interneurons within the central nervous system of Drosophila. To reveal the role of DSIAT in development and functioning of fly nervous system I performed characterization of neurological phenotypes of DSIAT knockout flies, also generated by gene targeting approach. I observed that DSIAT mutant larvae are sluggish and have abnormal neuromuscular junction (NMJ) morphology. Electrophysiological analysis of mutant larval NMJ showed altered evoked NMJ activity. It was also observed that DSIAT knockout adult flies are paralyzed when are exposed to higher temperatures. Longevity assays showed that DSIAT adult mutants have significantly reduced life span. I used genetic interaction analysis to identify possible sialylated targets in Drosophila and found that ?-subunit of voltage gated sodium channel is a potential sialylated protein in the fly nervous system. All these data strongly supports the hypothesis that DSIAT plays an important role for neural transmission and development in Drosophila. This research work establishes Drosophila as a useful model system to study sialylation which may shed light on related biological functions in higher organisms including humans.
14

Expression spannungsabhängiger Hirntyp-Natriumkanäle im sich entwickelnden Myokard der Ratte / Differential expression of brain-type voltage gated sodium channels in the developing rat myocardium

Alflen, Christian Thomas 06 November 2013 (has links)
No description available.
15

Unconventional forms of synaptic plasticity in the hippocampus and the striatum

Liu, Zhi 11 1900 (has links)
Synaptic transmission occurs as a result of either a spontaneous release of presynaptic vesicles or a batch release of presynaptic vesicles driven by action potentials. The physiological consequence of synaptic transmission driven by different patterns and frequencies of presynaptic stimulation has been extensively investigated. However, the physiological nature, mechanism as well as relevance of prolonged presynaptic stimulation have been poorly characterized. In this dissertation, I present three projects in which prolonged stimulation of synaptic transmission in different forms and different brain regions was studied for its effect on synaptic transmission, mechanisms and physiological relevance. In the first project, prolonged electrical stimulation (100 sec) at high frequency induced a deep synaptic depression in acute hippocampal slices, followed by a recovery of synaptic transmission after ~15 min. The deep synaptic depression was attributed to a complete depletion of presynaptic vesicle pools. In the second project, attempts were made to characterize the mechanism of nuclear activation of gene transcription induced by prolonged electrical stimulation (100 sec). Our results demonstrated that reduced inactivation of non-L-type calcium channels failed to provide calcium required for gene transcription, leaving the activation of gene transcription a selective function for L-type calcium channels. In the third project, we sought to study the physiological relevance of enhanced miniature events of inhibitory synapses induced by prolonged chemical stimulation. We showed that prolonged application (2 min) of nicotine to the striatal slice enhanced the frequency of miniature inhibitory currents that was accompanied with a reduction in the amplitude of evoked response. This reduction in the amplitude of evoked responses was ascribed to a compromised action potential invasion of presynaptic terminals possibly due to inactivation of sodium channels resulting from nicotine-induced depolarization. To summarize, prolonged stimulation of presynaptic vesicle release imposes significant influence upon neuron-to-neuron communication, with distinct mechanisms in different brain regions.
16

Unconventional forms of synaptic plasticity in the hippocampus and the striatum

Liu, Zhi 11 1900 (has links)
Synaptic transmission occurs as a result of either a spontaneous release of presynaptic vesicles or a batch release of presynaptic vesicles driven by action potentials. The physiological consequence of synaptic transmission driven by different patterns and frequencies of presynaptic stimulation has been extensively investigated. However, the physiological nature, mechanism as well as relevance of prolonged presynaptic stimulation have been poorly characterized. In this dissertation, I present three projects in which prolonged stimulation of synaptic transmission in different forms and different brain regions was studied for its effect on synaptic transmission, mechanisms and physiological relevance. In the first project, prolonged electrical stimulation (100 sec) at high frequency induced a deep synaptic depression in acute hippocampal slices, followed by a recovery of synaptic transmission after ~15 min. The deep synaptic depression was attributed to a complete depletion of presynaptic vesicle pools. In the second project, attempts were made to characterize the mechanism of nuclear activation of gene transcription induced by prolonged electrical stimulation (100 sec). Our results demonstrated that reduced inactivation of non-L-type calcium channels failed to provide calcium required for gene transcription, leaving the activation of gene transcription a selective function for L-type calcium channels. In the third project, we sought to study the physiological relevance of enhanced miniature events of inhibitory synapses induced by prolonged chemical stimulation. We showed that prolonged application (2 min) of nicotine to the striatal slice enhanced the frequency of miniature inhibitory currents that was accompanied with a reduction in the amplitude of evoked response. This reduction in the amplitude of evoked responses was ascribed to a compromised action potential invasion of presynaptic terminals possibly due to inactivation of sodium channels resulting from nicotine-induced depolarization. To summarize, prolonged stimulation of presynaptic vesicle release imposes significant influence upon neuron-to-neuron communication, with distinct mechanisms in different brain regions. / Medicine, Faculty of / Graduate
17

Calcium Alleviates Symptoms in Hyperkalemic Periodic Paralysis by Reducing the Abnormal Sodium Influx

DeJong, Danica January 2012 (has links)
Hyperkalemic periodic paralysis, HyperKPP, is an inherited progressive disorder of the muscles caused by mutations in the voltage gated sodium channel (NaV1.4). The objectives of this thesis were to develop a technique for measurement symptoms in vivo using electromyography (EMG) and to determine the mechanism by which Ca2+ alleviates HyperKPP symptoms, since this is unknown. Increasing extracellular [Ca2+] ([Ca2+]e) from 1.3 to 4 mM did not result in any increases in45Ca2+ influx suggesting no increase in intracellular [Ca2+] ([Ca2+]i) acting on an intracellular signaling pathway or on an ion channel such as the Ca2+sensitive K+ channels. HyperKPP muscles have larger TTX-sensitive22Na+ influx than wild type muscles because of the defective NaV1.4 channels. When [Ca2+] was increased from 1.3 to 4 mM, the abnormal 22Na+ influx was completely abolished. Thus, one mechanism by which Ca2+alleviates HyperKPP symptoms is by reducing the abnormal Na+ influx caused by the mutation in the NaV1.4 channel.
18

Epilepsy Mutations in Different Regions of the Nav1.2 Channel Cause Distinct Biophysical Effects

Mason, Emily R. 06 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / While most cases of epilepsy respond well to common antiepileptic drugs, many genetically-driven epilepsies are refractory to conventional antiepileptic drugs. Over 250 mutations in the Nav1.2 gene (SCN2A) have been implicated in otherwise idiopathic cases of epilepsy, many of which are refractory to traditional antiepileptic drugs. Few of these mutations have been studied in vitro to determine their biophysical effects on the channels, which could reveal why the effects of some are refractory to traditional antiepileptic drugs. The goal of this dissertation was to characterize multiple epilepsy mutations in the SCN2A gene, which I hypothesized would have distinct biophysical effects on the channel’s function. I used patch-clamp electrophysiology to determine the biophysical effects of three SCN2A epilepsy mutations (R1882Q, R853Q, and L835F). Wild-type (WT) or mutant human SCN2A cDNAs were expressed in human embryonic kidney (HEK) cells and subjected to a panel of electrophysiological assays. I predicted that the net effect of each of these mutations was enhancement of channel function; my results regarding the L835F and R1882Q mutations supported this hypothesis. Both mutations enhance persistent current, and R1882Q also impairs fast inactivation. However, examination of the same parameters for the R853Q mutation suggested a decrease of channel function. I hypothesized that the R853Q mutation creates a gating pore in the channel structure through which sodium leaks into the cell when the channel is in its resting conformation. This hypothesis was supported by electrophysiological data from Xenopus oocytes, which showed a significant voltage-dependent leak current at negative potentials when they expressed the R853Q mutant channels. This was absent in oocytes expressing WT channels. Overall, these results suggest that individual mutations in the SCN2A gene generate epilepsy via distinct biophysical effects that may require novel and/or tailored pharmacotherapies for effective management.
19

Molecular Modelling of Voltage-Gated Potassium, Sodium and Calcium Channels Complexed with Metal Ions and Small-Molecule Ligands

Bruhova, Iva 05 1900 (has links)
<p> Voltage-gated potassium, sodium, and calcium channels play fundamental roles in cell physiology. They are targets for numerous drugs that are used to treat pain, cardiovascular, autoimmune, and other disorders. Atomic-resolution structures of ion channels and their complexes with ligands are necessary to understand the mechanisms of drug action of ligands. Electrophysiological and crystallographic studies have advanced our understanding of ion channels, but the binding sites, access pathways, and the mechanism of state-dependent action of medically important drugs remain unclear. During my graduate studies, I investigated the structure-function relationships of voltage-gated ion channels and their complexes with drugs by using energy calculations with experimental constraints. My work has helped resolve controversial interpretations of experiments addressing structural similarity between prokaryotic and eukaryotic K+ channels. Our model of the open Shaker K+ channel was confirmed by the later published X-ray structure of Kv1.2. Our Cav2.1 model reinterprets substituted-cysteine accessibility experiments, validates the proposed alignment between K+ and Ca2+ channels, and suggests a similar folding of voltage-gated K+ and Ca2+ channels. These results allowed me to model eukaryotic K+ and Na+ channels in the resting and open/slow-inactivated states, and to predict the binding sites of local anaesthetics, correolide, and chromanol 293B. In these studies, we proposed the involvement of metal ions in the binding of nucleophilic drugs and suggested that the deficiency of permeating ion(s) in the outer pore of the slow-inactivated channels stabilizes the ligands. Simultaneous studies of K+, Na+, and Ca2+ channels were advantageous because the information acquired from one family of ion channels was relevant to other families. My studies contributed to the growing knowledge about ion channels by offering structural information and suggesting mechanisms for the action of drugs. </p> / Thesis / Doctor of Philosophy (PhD)
20

CLC-3 a Putative Gamma VGCC Sub-unit Homologue in the Worm, <i>C. Elegans</i>

Melnik-Martinez, Katya Verushka 05 March 2008 (has links)
No description available.

Page generated in 0.0976 seconds