• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Rôle du canal sodique NaV1.5 et de la sous-unité auxiliaire β4 dans l’invasivité des cellules cancéreuses mammaires in vitro et in vivo / Role of voltage-gated sodium channel NaV1.5 and β4 auxiliary subunit in the in vitro and in vivo breast cancer cells invasiveness

Driffort, Virginie 24 November 2014 (has links)
L’expression anormale du canal sodique Nav1.5 dans le cancer du sein est corrélée au développement métastatique et à une mortalité augmentée. Le canal Nav1.5 est localisé dans les invadopodes des cellules cancéreuses mammaires humaines MDA-MB-231 et augmente leur activité protéolytique par une modulation allostérique de l’échangeur NHE-1 et l’activation de protéases acides. In vivo, dans un modèle de xénogreffe sur souris NMRI nude, l’expression de Nav1.5 potentialise la colonisation des poumons par les cellules cancéreuses mammaires humaines. Cette colonisation métastatique est inhibée par un traitement à la ranolazine, un inhibiteur pharmacologique des canaux Nav1.5. La sous-unité β4, auxiliaire des canaux Nav, voit son expression diminuer au cours de la progression cancéreuse, ce qui est associé in vitro à une augmentation de l’invasivité cellulaire. Cette augmentation d’invasivité semble indépendante du canal Nav1.5 et pourrait être associée à une transition des cellules vers un phénotype amiboïde. En conclusion, l’expression de Nav1.5 et la perte d’expression de β4 semblent jouer des rôles complémentaires dans l’invasivité des cellules cancéreuses. / The abnormal expression of sodium channel Nav1.5 in breast cancer is correlated with metastatic development and an increased mortality. The Nav1.5 channel is located in invadopodia in human breast cancer cells MDA-MB-231, where it increases proteolytic activity by allosteric modulation of exchanger NHE-1 and activation of acidic proteases. In vivo, in a xenograft model in nude NMRI mice, the expression of Nav1.5 potentiates lung colonization by human breast cancer cells. Metastatic colonization is inhibited by treatment with ranolazine, a pharmacological inhibitor of Nav1.5. The β4 subunit, an auxiliary subunit of Nav channels, is expressed at low levels or lost when tumors are more aggressive, and its suppression in vitro increases celI invasiveness. This increase seems to be independent of Nav1.5 and could be associated with the transition of cells to an amoeboid phenotype. In conclusion, Nav1.5 expression and the loss of β4 expression seem to play complementary roles in the invasiveness of cancer cells.
12

Diversité des mécanismes de stabilisation du segment initial de l'axone

Montersino, Audrey 05 December 2013 (has links)
Le segment initial de l’axone (SIA) est un sous-domaine fonctionnel du neurone localisé dans l’axone proximal, qui assure deux fonctions : l’initiation du potentiel d’action et le maintien de l’identité axonale. Le maintien et la stabilité du SIA sont des éléments fondamentaux de l’excitabilité du neurone et la nature dynamique de l’organisation fonctionnelle du SIA a été mise en évidence. Les objectifs de mes travaux de thèse ont été d’étudier les mécanismes responsables du maintien du SIA, en condition physiologique ou pathologique et d’identifier de nouveaux acteurs impliqués dans ces mécanismes. Dans un premier temps, nous avons identifié et caractérisé l’expression d’une nouvelle protéine au SIA : la protéine Scrib1. En utilisant une approche par ARN interférent nous avons montré que Scrib1 est nécessaire au maintien de la morphologie du SIA. Les conséquences fonctionnelles de l’absence de Scrib1 sont une diminution de l’excitabilité neuronale. Dans un second temps, nous nous sommes intéressés aux mécanismes pouvant être à l’origine de l’expression ectopique du canal Nav1.8 observée dans certaines pathologies démyélinisantes. Nous avons montré que Nav1.8 possède un site d’interaction à l’ankyrine G. Ce motif d’interaction est suffisant pour adresser un canal chimérique au SIA et perturber l’expression des Nav1 endogènes. A l’inverse des Nav1 du système nerveux central, l’interaction entre Nav1.8 et l’ankyrine G n’est pas régulée par la CK2. Cette interaction constitutive entre Nav1.8 et l’ankyrine G pourrait expliquer son expression ectopique dans le système nerveux central. / The axonal initial segment (AIS) is a unique sub-domain that plays a central role in the physiology of the neuron, as it orchestrates both electrogenesis and the maintenance of neuronal polarity. The maintenance and the stability of the AIS after assembly ensure a reliable generation of action potentials. However, new mechanisms affecting AIS protein-protein interaction and composition have been shown to modulate the electrogenesis of the neuron. Moreover, recent findings highlight that the AIS is capable of homeostatic plasticity through an activity–dependent change either in its location along the proximal axon or in its length. The objectives of my thesis were to study the mechanisms responsible for AIS maintenance in physiological or pathological condition and to identify new players involved in these mechanisms.First we identified and characterized the expression of a novel protein in AIS: the protein Scrib1. Using an shRNA approach we showed that Scrib1 is necessary to maintain the AIS morphology. The functional consequence of the absence of Scrib1 is a decreased of neuronal excitability.Second, we are interested in the mechanisms that cause the ectopic expression of Nav1.8 channel observed in demyelinating diseases. We found that Nav1.8 constitutively interacts with ankG in contrast to Nav1.2, which requires CK2 phosphorylation to bind ankG. Furthermore, when Nav1.8 ankyrin-binding domain was expressed in hippocampal neuron, it clustered at the AIS where it acted as a dominant negative for endogenous Nav1. This constitutive interaction between Nav1.8 and ankG could explain the ectopic expression of Nav1.8 in the central nervous system.
13

Synthesis of a PbTx-2 photoaffinity and fluorescent probe and an alternative synthetic route to photoaffinity probes

Cassell, Ryan T 29 July 2014 (has links)
A natural phenomenon characterized by dense aggregations of unicellular photosynthetic marine organisms has been termed colloquially as red tides because of the vivid discoloration of the water. The dinoflagellate Karenia brevis is the cause of the Florida red tide bloom. K. brevis produces the brevetoxins, a potent suite of neurotoxins responsible for substantial amounts of marine mammal and fish mortalities. When consumed by humans, the toxin causes Neurotoxic Shellfish Poisoning (NSP). The native function of brevetoxin within the organism has remained mysterious since its discovery. There is a need to identify factors which contribute to and regulate toxin production within K. brevis. These toxins are produced and retained within the cell implicating a significant cellular role for their presence. Localization of brevetoxin and identification of a native receptor may provide insight into its native role as well as other polyether ladder type toxins such as the ciguatoxins, maitotoxins, and yessotoxins. In higher organisms these polyether ladder molecules bind to transmembrane proteins with high affinity. We anticipated the native brevetoxin receptor would also be a transmembrane protein. Photoaffinity labeling has become increasingly popular for identifying ligand receptors. By attaching ligands to these photophors, one is able to activate the molecule after the ligand binds to its receptor to obtain a permanent linkage between the two. Subsequent purification provides the protein with the ligand directly attached. A molecule that is capable of fluorescence is a fluorophore, which upon excitation is capable of re-emitting light. Fluorescent labeling uses fluorophores by attaching them covalently to biologically active compounds. The synthesis of a brevetoxin photoaffinity probe and its application in identifying a native brevetoxin receptor will be described. The preparation of a fluorescent derivative of brevetoxin will be described and its use in localizing the toxin to an organelle within K. brevis. In addition, the general utility of a synthesized photoaffinity label with other toxins having similar functionality will be described. An alternative synthetic approach to a general photoaffinity label will also be discussed whose goal was to accelerate the preparation and improve the overall synthetic yields of a multifunctional label.
14

Veratridine Can Bind to a Site at the Mouth of the Channel Pore at Human Cardiac Sodium Channel NaV1.5

Gulsevin, Alican, Glazer, Andrew M., Shields, Tiffany, Kroncke, Brett M., Roden, Dan M., Meiler, Jens 20 January 2024 (has links)
The cardiac sodium ion channel (NaV1.5) is a protein with four domains (DI-DIV), each with six transmembrane segments. Its opening and subsequent inactivation results in the brief rapid influx of Na+ ions resulting in the depolarization of cardiomyocytes. The neurotoxin veratridine (VTD) inhibits NaV1.5 inactivation resulting in longer channel opening times, and potentially fatal action potential prolongation. VTD is predicted to bind at the channel pore, but alternative binding sites have not been ruled out. To determine the binding site of VTD on NaV1.5, we perform docking calculations and high-throughput electrophysiology experiments in the present study. The docking calculations identified two distinct binding regions. The first site was in the pore, close to the binding site of NaV1.4 and NaV1.5 blocking drugs in experimental structures. The second site was at the “mouth” of the pore at the cytosolic side, partly solvent-exposed. Mutations at this site (L409, E417, and I1466) had large effects on VTD binding, while residues deeper in the pore had no effect, consistent with VTD binding at the mouth site. Overall, our results suggest a VTD binding site close to the cytoplasmic mouth of the channel pore. Binding at this alternative site might indicate an allosteric inactivation mechanism for VTD at NaV1.5

Page generated in 0.1728 seconds