81 |
Structure of Turbulent Flow in a Rod BundleDon, Armel January 2016 (has links)
The structure of turbulence in the subchannels of a large-scale 60 degree section of a CANDU 37-rod bundle was studied at Reynolds numbers equal to 50,000, 100,000 and 130,000. Measurements were conducted at roughly 33.81 rod diameters from the inlet of the rod bundle using single-point, two-component hot-wire anemometry. Analysis of the axial velocity signal indicated a weak effect of Reynolds number on the axial velocity distribution and a bulging of axial velocity contours toward the narrow gaps. The normalised normal Reynolds stresses and the normalised turbulent kinetic energy were found to decrease as the Reynolds number increased. The radial Reynolds shear stress varied linearly with radial distance from the rod, crossing zero at the location of local maximum of the axial velocity. This stress was symmetric about the central rod whereas the azimuthal Reynolds shear stress was anti-symmetric. The Reynolds number effect was weak but measurable on the integral length scales of the axial and radial velocity fluctuations but negligible on the integral length scale of the azimuthal velocity fluctuations, especially in the gap regions. The Taylor and Kolmogorov microscales increased from the wall toward the centre of the subchannel and decreased as the Reynolds number increased. The wall shear stress stress distribution around the central rod indicated no effect of Reynolds number, when normalized by the corresponding average. The wall shear stress reached local minima at rod-wall and rod-rod gaps and local maxima in the open flow regions. Vortex streets were generated within the subchannels very close to the inlet of the rod bundle. The convection speed and frequency of the vortex street were found to increase proportionately to Reynolds number, whereas the vortex spacing was not affected by the Reynolds number.
|
82 |
Point vortices on the hyperboloidNava Gaxiola, Citlalitl January 2013 (has links)
In Hamiltonian systems with symmetry, many previous studies have centred their attention on compact symmetry groups, but relatively little is known about the effects of noncompact groups. This thesis investigates the properties of the system of N point vortices on the hyperbolic plane H2, which has noncompact symmetry SL (2, R).The Poisson Hamiltonian structure of this dynamical system is presented and the relative equilibria conditions are found. We also describe the trajectories of relative equilibria with momentum value not equal to zero. Finally, stability criteria are found for a number of cases, focusing on N = 2, 3. These results are placed in context with the study of point vortices on the sphere, which has compact symmetry.
|
83 |
Development and testing of quasi-optical devices for Photon Orbital Angular Momentum manipulation at millimetre wavelengthsMaccalli, Stefania January 2014 (has links)
It is well known that light can carry two different kind of angular momentum that together form the total angular momentum of photons. These two forms are the spin orbital angular momentum, associated with the circular polarisation of light, and the orbital angular momentum of light associated with a wavefront tilted with respect to the propagation axis. Any tilted wavefront generates an orbital component of the angular momentum but there are some special cases in which this property becomes particularly interesting. It is the case of optical vortices which form when the waveform is continuously and uniformly tilted to the propagation axis forming a spiral structure.
|
84 |
A New Apparatus for Studies of Quantized Vortex Dynamics in Dilute-Gas Bose-Einstein CondensatesNewman, Zachary L., Newman, Zachary L. January 2016 (has links)
The presence of quantized vortices and a high level of control over trap geometries and other system parameters make dilute-gas Bose-Einstein condensates (BECs) a natural environment for studies of vortex dynamics and quantum turbulence in superfluids, primary interests of the BEC group at the University of Arizona. Such research may lead to deeper understanding of the nature of quantum fluid dynamics and far-from-equilbrium phenomena.Despite the importance of quantized vortex dynamics in the fields of superfluidity, superconductivity and quantum turbulence, direct imaging of vortices in trapped BECs remains a significant technical challenge. This is primarily due to the small size of the vortex core in a trapped gas, which is typically a few hundred nanometers in diameter. In this dissertation I present the design and construction of a new ^87Rb BEC apparatus with the goal of studying vortex dynamics in trapped BECs. The heart of the apparatus is a compact vacuum chamber with a custom, all-glass science cell designed to accommodate the use of commercial high-numerical-aperture microscope objectives for in situ imaging of vortices.The designs for the new system are, in part, based on prior work in our group on in situ imaging of vortices. Here I review aspects of our prior work and discuss some of the successes and limitations that are relevant to the new apparatus. The bulk of the thesis is used to described the major subsystems of the new apparatus which include the vacuum chamber, the laser systems, the magnetic transfer system and the final magnetic trap for the atoms. Finally, I demonstrate the creation of a BEC of ~2x10^6 ^87Rb atoms in our new system and show that the BEC can be transferred into a weak, spherical, magnetic trap with a well defined magnetic field axis that may be useful for future vortex imaging studies.
|
85 |
Spin waves and supercritical motion in superfluid ³HeLaine, S. (Sami) 14 June 2019 (has links)
Abstract
Helium is the second most abundant element in the Universe. It is the only known substance that can exist in liquid state at absolute zero. There are two stable isotopes of helium, fermionic ³He and bosonic ⁴He. At sufficiently low temperatures, both isotopes undergo a phase transition into a superfluid state. These superfluids are usually characterised by their ability to flow without resistance, but this is by no means their only remarkable property.
In this thesis, we study theoretically superfluid ³He. The work consists of two separate projects. First, we study the effect of a quantised vortex line to spin dynamics of the superfluid. We find that the interplay between the vortex and the magnetisation of the liquid generates spin waves, dissipating energy. We find that the theoretically predicted energy dissipation is in agreement with experimental data, implying that spin-wave radiation can be an important mechanism of magnetic relaxation in superfluid ³He.
Second, we study the drag force acting on an object moving through zero-temperature superfluid at a constant velocity. The drag arises if momentum is transferred from the object to the fluid. At low velocities, no such mechanism exist and thus the drag vanishes. If the velocity exceeds the Landau velocity \(v_L\), it becomes possible for the object to create quasiparticle excitations that could, in principle, transfer momentum away from the object. Thus, \(v_L\) has been generally assumed to be the critical velocity, that is, the velocity above which the drag force starts to increase rapidly towards the normal-state value. We find that this is not necessarily the case. Objects much larger than the superfluid coherence length modify the superfluid flow field around them. The spatial variation of the flow field can shield the object, preventing quasiparticles from transferring momentum away from the object. This leads to a critical velocity greater than \(v_L\). / Original papers
The original publications are not included in the electronic version of the dissertation.
Laine, S. M., & Thuneberg, E. V. (2016). Calculation of Leggett–Takagi Relaxation in Vortices of Superfluid ³He-B. Journal of Low Temperature Physics, 183(3–4), 222–229. https://doi.org/10.1007/s10909-016-1516-x
Kuorelahti, J. A., Laine, S. M., & Thuneberg, E. V. (2018). Models for supercritical motion in a superfluid Fermi liquid. Physical Review B, 98(14). https://doi.org/10.1103/physrevb.98.144512
http://jultika.oulu.fi/Record/nbnfi-fe2018112148794
Laine, S. M., & Thuneberg, E. V. (2018). Spin-wave radiation from vortices in ³He−B. Physical Review B, 98(17). https://doi.org/10.1103/PhysRevB.98.174516
http://jultika.oulu.fi/Record/nbnfi-fe2019092630083
|
86 |
Experimental Studies of Vertical Mixing in an Open Channel Raceway for Algae Biofuel ProductionVoleti, Ram Sudheer 01 August 2012 (has links)
Turbulent mixing plays an important role in the distribution of sunlight, carbon dioxide, and nutrients for algae in the raceway ponds. For large-scale raceway ponds the choice of mixing technology still needs to be evaluated in order to prevent algae sedimentation and to enhance light utilization efficiency. In open ponds, mixing the algae culture is of great significance in terms of input energy costs and particularly productivity. A very small amount of research has been performed previously using different vortex generators in the algal raceway ponds, but the quantification of mixing depth relationships is not defined well. By accepting the premise from the literature review that mixing increases algal production, delta wings were selected to study mixing characteristics in the raceway. The main objective of this research was to study algae-raceway hydrodynamics with an emphasis on increasing vertical mixing. A clear acrylic raceway was designed and constructed for flow visualization studies. Experimental investigations were performed to quantify the vertical mixing with and without delta wings in a lab-scale raceway at approximately the same power input to the paddle wheel. Velocity vector profiles and turbulence parameters were measured using an Acoustic Doppler Velocimeter (ADV) at various locations along the entire length of the raceway. The results indicated that the addition of delta wings increases the vertical mixing intensity or circulation of algae cells over the raceway depth. Vortices were observed in the raceway up to a distance of around 3 m downstream of the delta wing. This sort of systematic vertical mixing plays an important role to produce the flashing light effect (light-dark cycles) on algae mass culture. In addition, turbulence dissipation rates were evaluated to compare them with the published literature and to estimate the microscales using the Kolmogorov hypothesis. Also, an energy model was developed to operate the paddlewheel-driven raceway with the delta wing.
|
87 |
Traitement du Signal d’un LIDAR Doppler scannant dédié à la surveillance aéroportuaire / Signal Processing for a scanning Doppler LIDAR dedicated to airport surveillanceHallermeyer, Alexandre 31 January 2017 (has links)
Un algorithme permettant d’estimer précisément les paramètres des tourbillons de sillage (positions et circulations) en utilisant les données spectrales fournies par un LIDAR a été développé. Il s’articule en 3 grandes étapes : La première permet de détecter la présence de tourbillon et d’en faire une localisation grossière grâce à la méthode des enveloppes de vitesses. La seconde étape a pour but d’affiner l’estimation des positions des tourbillons en utilisant une optimisation du critère des moindres carrés. Cette étape permet également de faire une première estimation de la circulation des tourbillons. La troisième et dernière étape se concentre sur l’estimation des circulations des tourbillons en maximisant le critère de vraisemblance. Les estimations sont de plus en plus fines et se concentrent au fur et à mesure sur les paramètres les plus critiques. La mise au point de cet algorithme a nécessité d’utiliser plusieurs modèles (LIDAR, tourbillons de sillage, atmosphère) et de formuler un certain nombre d’hypothèses et approximations simplificatrices afin d’atteindre un coût calculatoire raisonnable. L’algorithme proposé a ensuite fait l’objet d’une évaluation de performances, l’intérêt étant porté sur la robustesse par rapport aux différents bruits altérant la mesure, en particulier celui lié à la turbulence atmosphérique et par rapport aux erreurs de modèle. Cette évaluation a été menée à la fois sur des données simulées à l’aide de modèles paramétriques simplifiés, et sur des données de simulations aux grandes échelles.Les paramètres instrumentaux du LIDAR constituent de potentiels degrés de liberté pour améliorer les performances de l’estimateur, en particulier pour les grandeurs les plus critiques, c’est-à-dire les valeurs de circulation. Le calcul des performances de l’estimateur nécessitant un coût de calcul non négligeable, il se prête mal à des fins d’optimisation. C’est pourquoi une étude de l’influence des paramètres du LIDAR sur la Borne de Cramér-Rao (BCR) a été menée. Cette étude a permis de mieux comprendre l’influence des paramètres instrumentaux et d’aboutir à une configuration optimale pour la BCR. / An algorithm was developed to estimate precisely wake vortices parameters (positions and circulations) using spectral data provided by a LIDAR. It is articulated in 3 main stages: The first one allows to detect the presence of vortices and to make a rough localization thanks to the method of the velocity envelopes. The second step is to refine the estimation of vortex positions using an optimization of the least squares criterion. This step also permits to make an first estimation of the vortices circulation. The third and final step focuses on estimating vortex circulations by maximizing the likelihood criterion. Estimates are becoming finer and more focused on the most critical parameters. The development of this algorithm required the use of several models (LIDAR, wake vortices, atmosphere) and to formulate a number of simplifying assumptions in order to reach a reasonable computational cost. The proposed algorithm was then subjected to a performance evaluation, the interest being focused on the robustness with respect to the different noises altering the measurement, particularly the one related to the atmospheric turbulence, and with respect to the model errors. This evaluation was carried out both on simulated data using simplified parametric models, and on Large Eddy Simulations.The instrumental parameters of LIDAR are potential degrees of freedom to improve the performance of the estimator, in particular for the most critical quantities, that is to say the circulation values. The calculation of the performance of the estimator requiring a significant computational cost, it lends itself poorly for optimization purposes. This is why a study of the influence of the LIDAR parameters on the Cramér-Rao Bound (CRB) was carried out. This study allowed to understand the influence of the instrumental parameters and to reach an optimal configuration for the CRB.
|
88 |
Streamwise Vortices in a Convex Wall JetPANDEY, ANSHUMAN 02 October 2019 (has links)
No description available.
|
89 |
Particle Separation Through Taylor-couette Flow And Dielectrophoretic TrappingBock, Christopher Paul 01 January 2010 (has links)
As the world population approaches seven billion, a greater strain is put on the resources necessary to sustain life. One of the most basic and essential resources is water and while two thirds of the earth is covered by water, the majority is either salt water (oceans and seas) or it is too contaminated to drink. The purpose of this project is to develop a portable device capable of testing whether a specific source of water (i.e. lake, river, well…) is potable. There are numerous filtration techniques that can remove contaminants and make even the dirtiest water clean enough for consumption but they are for the most part, very time consuming and immobile processes. The device is not a means of water purification but rather focuses on determining the content of the water and whether it is safe. Particles within the water are separated and trapped using a combination of a Taylor Couette fluid flow system and Dielectrophoretic electrodes. This paper explores Taylor Couette flow in a large gap and low aspect ratio system through theory and experimentation with early stage prototypes. Different inner cylinder radii, 2.12cm, 1.665cm and 1.075cm, were tested at different speeds approaching, at and passing the critical Taylor number, 3825, 4713 and 6923 respectively for each cylinder. Dielectrophoretic (DEP) electrodes were designed, fabricated, coated and tested using latex beads to determine the method of integrating them within the fluid flow system. Taylor Couette theory, in terms of the formation of vortices within the large gap, small aspect ratio system, was not validated during testing. The flow pattern generated was more akin to a chaotic circular Couette flow but still served to move the particles toward the outer wall. Fully integrated tests were run with limited success. Recommendations were made to pursue both circular Couette flow as the basis for iv particle separation and dimensional changes in the setup to allow for the formation of Taylor vortices by increasing the radius ratio but still allowing for a larger volume of fluid.
|
90 |
A LOW-ORDER NONLINEAR STATE-SPACE MODEL FOR DELTA WING LEADING EDGE VORTICESLiao, Bo 25 April 2006 (has links)
No description available.
|
Page generated in 0.2417 seconds