Spelling suggestions: "subject:"wachstumsprozesse"" "subject:"wachstumsphase""
1 |
Nonequilibrium phase transitions and surface growth / Nicht-Gleichgewicht Phasenübergänge und WachstumsprozesseCardoso Barato, Andre January 2010 (has links) (PDF)
This thesis is concerned with the statistical physics of various systems far from thermal equilibrium, focusing on universal critical properties, scaling laws and the role of fluctuations. To this end we study several models which serve as paradigmatic examples, such as surface growth and non-equilibrium wetting as well as phase transitions into absorbing states. As a particular interesting example of a model with a non-conventional scaling behavior, we study a simplified model for pulsed laser deposition by rate equations and Monte Carlo simulations. We consider a set of equations, where islands are assumed to be point-like, as well as an improved one that takes the size of the islands into account. The first set of equations is solved exactly but its predictive power is restricted to the first few pulses. The improved set of equations is integrated numerically, is in excellent agreement with simulations, and fully accounts for the crossover from continuous to pulsed deposition. Moreover, we analyze the scaling of the nucleation density and show numerical results indicating that a previously observed logarithmic scaling does not apply. In order to understand the impact of boundaries on critical phenomena, we introduce particle models displaying a boundary-induced absorbing state phase transition. These are one-dimensional systems consisting of a single site (the boundary) where creation and annihilation of particles occur, while particles move diffusively in the bulk. We study different versions of these models and confirm that, except for one exactly solvable bosonic variant exhibiting a discontinuous transition with trivial exponents, all the others display a non-trivial behavior, with critical exponents differing from their mean-field values, representing a universality class. We show that these systems are related to a $(0+1)$-dimensional non-Markovian model, meaning that in nonequilibrium a phase transition can take place even in zero dimensions, if time long-range interactions are considered. We argue that these models constitute the simplest universality class of phase transition into an absorbing state, because the transition is induced by the dynamics of a single site. Moreover, this universality class has a simple field theory, corresponding to a zero dimensional limit of direct percolation with L{\'e}vy flights in time. Another boundary phenomena occurs if a nonequilibrium growing interface is exposed to a substrate, in this case a nonequilibrium wetting transition may take place. This transition can be studied through Langevin equations or discrete growth models. In the first case, the Kardar-Parisi-Zhang equation, which defines a very robust universality class for nonequilibrium moving interfaces, is combined with a soft-wall potential. While in the second, microscopic models, in the corresponding universality class, with evaporation and deposition of particles in the presence of hard-wall are studied. Equilibrium wetting is related to a particular case of the problem, corresponding to the Edwards-Wilkinson equation with a potential in the continuum approach or to the fulfillment of detailed balance in the microscopic models. In this thesis we present the analytical and numerical methods used to investigate the problem and the very rich behavior that is observed with them. The entropy production for a Markov process with a nonequilibrium stationary state is expected to give a quantitative measure of the distance form equilibrium. In the final chapter of this thesis, we consider a Kardar-Parisi-Zhang interface and investigate how entropy production varies with the interface velocity and its dependence on the interface slope, which are quantities that characterize how far the stationary state of the interface is away from equilibrium. We obtain results in agreement with the idea that the entropy production gives a measure of the distance from equilibrium. Moreover we use the same model to study fluctuation relations. The fluctuation relation is a symmetry in the large deviation function associated to the probability of the variation of entropy during a fixed time interval. We argue that the entropy and height are similar quantities within the model we consider and we calculate the Legendre transform of the large deviation function associated to the height for small systems. We observe that there is no fluctuation relation for the height, nevertheless its large deviation function is still symmetric. / Diese Dissertationsschrift befasst sich mit der statistischen Physik verschiedener Systeme fernab vom thermischen Gleichgewicht. Im Mittelpunkt stehen dabei die kritischen Eigenschaften, Skalierungsgesetze sowie die Rolle von Fluktuation. Dazu werden als paradigmatische Beispiele verschiedene Modellsysteme untersucht, unter anderem Wachstumsprozesse, Benetzungsphänomene fernab vom Gleichgewicht sowie Phasenübergänge in absorbierende Zustände. Als ein besonders interessantes Beispiel mit einem unkonventionellen Skalierungsverhalten wird zunächst ein Modell für gepulste Laserdeposition sowohl numerisch als auch mit Ratengleichungen untersucht. Wir betrachten dazu eine Approximation, das auf der Annahme punktförmiger Teilchen beruht, sowie ein verbessertes Gleichungssystem, das die Ausdehnung der deponierten Inseln mit berücksichtigt. Die numerisch integrierten Lösungen dieses verbesserten Systems stimmen mit den Simulationsresultaten hervorragend überein und reproduzieren ebenfalls den Crossover von kontinuierlicher zu gepulster Deposition. Darüber hinaus wird das Skalierungsverhalten der Nukleationsdichte im Detail untersucht und eine kürzlich eingeführte Hypothese logarithmischer Skalengesetze in Frage gestellt. Um den Einfluss von Randtermen auf kritische Phänomene unter Nichtgleichgewichtsbedingungen besser zu verstehen, wird ein Modell mit einem randinduzierten Phasenübergang eingeführt. Der Rand besteht aus hier einem einzigen Gitterplatz, an dem Teilchen erzeugt und vernichtet werden können, während die Teilchen im Innern des Systems lediglich diffundieren können. Es werden verschiedene Varianten dieses Modells untersucht, die mit Ausnahme einer bestimmten bosonischen Variante zu einer neuen Universalitätsklasse mit einem nichttrivialen kritischen Verhalten gehören. In der Arbeit wird gezeigt, dass diese Systeme effektiv auf ein 0+1-dimensionales Modell mit einer zeitlich nichtlokalen Dynamik reduziert werden können, dass also Phasenübergänge in nicht-Markovschen Nichtgleichgewichtssystemen sogar in 0 räumlichen Dimensionen, d.h. einem einzigen Punkt möglich sind. Es handelt sich wahrscheinlich um den einfachsten nichttrivialen Phasenübergang dieser Art, der formal dem nulldimensionalen Limes der sogenannten gerichteten Perkolation mit zeitlichen Levy-Flügen entspricht. Eine andere Art von Randeffekten tritt auf, wenn ein Wachstumsprozess fernab vom Gleichgewicht auf einem inerten Substrat stattfindet, wobei es zu einem Benetzungsphasenübergang kommen kann. Solche Systeme können anhand ihrer Langevin-Gleichung, z.B. der Kardar-Parisi-Zhang (KPZ)-Gleichung in einem geeigneten Potential, oder auf der Basis diskreter Wachstumsprozesse mit Deposition und Verdampfung von Teilchen auf einem Substrat untersucht werden. Benetzungsübergänge im thermischen Gleichgewicht stellen sich als Spezialfall heraus, der durch die Edwards-Wilkinson-Gleichung bzw. detaillierte Balance beschrieben wird. Die vorliegende Arbeit stellt analytische und numerische Methoden vor und demonstriert die reichhaltige Phänomenologie solcher Modelle. Das letzte Kapitel befasst sich mit der Rolle von Fluktuationen und der Entropieproduktion von Nichtgleichgewichtssystemen. Um zu überprüfen, ob sich die Entropieproduktion als ein Maß für den Abstand vom Gleichgewicht eignet, wird wiederum ein einfacher Wachstumsprozess untersucht, der diese Hypothese bestätigt. Das gleiche Modell wird benutzt, um verschiedene Fluktuationsrelationen zu testen, die auf Symmetrien in der Wahrscheinlichkeitsverteilung extremer Fluktionationen beruhen. Obwohl die Entropie und die Höhe der deponierten Schicht im stationären Zustand formal ähnliche Eigenschaften besitzen, gelingt es nicht, ein Fluktuationstheorem für die Höhenvariablen zu formulieren, obwohl die entsprechende Wahrscheinlichkeitsverteilung symmetrisch ist. Dies legt den Schluss nahe, dass Fluktuationstheoreme grundsätzlich nur auf der Basis von Wahrscheinlichkeitsströmen konstruiert werden können.
|
2 |
Spectromicroscopic characterisation of the formation of complex interfaces / Spektromikroskopische Charakterisierung der Bildung komplexer GrenzflächenMaier, Florian C. January 2010 (has links) (PDF)
Within the framework of this thesis the mechanisms of growth and reorganisation of surfaces within the first few layers were investigated that are the basis for the fabrication of high quality thin films and interfaces. Two model systems, PTCDA/Ag(111) and CdSe/ZnSe quantum dots (QD), were chosen to study such processes in detail and to demonstrate the power and improvements of the aberration corrected spectromicroscope SMART [1] simultaneously. The measurements benefit especially from the enhanced transmission of the microscope and also from its improved resolution. SMART, the first double–aberration corrected instrument of its kind [2], provided comprehensive methods (LEEM/PEEM, μ–LEED, μ–XPS) to study in–situ and in real time the surface reorganisation and to determine morphology, local structure and local chemical composition of the resulting thin film. Complementarily, a commercial AFM [3] was used ex–situ. XPEEM and μ–XPS measurements were made possible by attaching SMART to the high flux density beamline of the soft–X–ray source BESSY–II [4]. PTCDA/Ag(111) – Growth and structure of the first two layers Although PTCDA/Ag(111) is one of the most intensely studied model systems for the growth of organic semiconductor thin films, it still offers new insights into a complex growth behaviour. This study enlightens the temperature dependant influence of morphological features as small as monatomic Ag steps on the growth process of the first two layers. At low temperatures, single Ag steps act as diffusion barriers. But interdiffusion was observed already for the 2nd layer whereas domain boundaries in the 1st PTCDA–layer persist for crystallite growth in the 2nd layer. 1st layer islands are more compact and the more dendritic development of the 2nd layer indicates reduced interaction strength between 2nd and 1st layer. These findings were explained by a model consisting of structural and potential barriers. The second part of the PTCDA study reveals a variety of phases that appears only if at least two layers are deposited. Besides the six known rotational domains of the interface system PTCDA/Ag(111) [5], a further manifold of structures was discovered. It does not only show a surprising striped image contrast, but the 2nd layer also grows in an elongated way along these so–called ’ripples’. The latter show a rather large period and were found in a wide temperature range. Additionally the μ-LEED pattern of such a domain shows a new super–superstructure as well. This phase is explained by a structural model that introduces a rotated, more relaxed domain in the 2nd layer that does not exist in the first layer. Its structural parameters are similar to those of the bulk unitcells of PTCDA. The model is confirmed by the observation of two different rotational domains that grow on top of one single ’substrate’ domain in the 1st layer. The orientations of the ripple phases fit as well to the predictions of the model. The growth direction along the ripples corresponds to the short diagonal of the super–superstructure unitcell with diamond–like shape. CdSe/ZnSe – Inverse structuring by sublimation of an α-Te cap With the second model system the formation of CdSe quantum dots (QD) from strained epi-layers was investigated. In this case the structures do not form during deposition, but rather during sublimation of the so–called ‘ignition cap’. For these pilot experiments not only the process of QD formation itself was of interest, but also the portability of the preparation and the prevention of contaminations. It was found that the α-Se is well suited for capping and the last step of the QD preparation, the sublimation of the α-Te cap, needs a sufficiently high rate in rise of temperature. Subsequently the cap, the process of desorption and the final surface with the quantum structures were investigated in detail. The cap was deposited by the MBE-group in Würzburg as an amorphous Te layer but was found to contain a variety of structures. Holes, cracks, and micro–crystallites within an α-Te matrix were identified. Sublimation of the “ignition cap” was observed in real–time. Thus the discovered cap-structures could be correlated with the newly formed features as, e.g., QDs on the bare CdSe surface. Since CdSe/ZnSe QDs prefer to form in the neighbourhood of the Te μ–crystallites, Te was found to play a major role in their formation process. Different explanations as the impact of Te as a surfactant, an enhanced mobility of adatoms or as stressor nuclei are discussed. The spectromicroscopic characterisation of the CdSe surface with QDs revealed the crystallographic directions. An increased Cd signal of the film was found at positions of former holes. Several possibilities as segregation or surface termination are reviewed, that might explain this slight Cd variation. Therewith, an important step to a detailed understanding of the complex reorganisation process in coating systems could be achieved. / Im Rahmen dieser Arbeit wurden der Schicht– und Grenzflächenpräparation zu Grunde liegende Wachstums– und Reorganisationsmechanismen anhand von zwei Modellsystemen in–situ untersucht. Diese waren auch geeignet, das Potential von SMART [1, 2], dem ersten doppelt aberrationskorrigierten, niederenergetischen Elektronen-Spektromikroskop, in seiner weiter optimierten Version zu demonstrieren. Dabei wurde besonders von der gesteigerten Transmission des Mikroskops, aber auch von der verbesserten Auflösung durch die Aberrationskorrektur profitiert. SMART erlaubt nicht nur Messungen unter UHV–Bedingungen, sondern auch in Echtzeit, wobei zwischen einer Reihe von Methoden (LEEM/PEEM, μ–LEED, μ–XPS) kurzfristig und in–situ gewechselt werden kann. Ergänzt wurden die Messungen mit Hilfe eines kommerziellen AFM [3]. Erst die Installation von SMART an einem Strahlrohr von BESSY–II [4] mit hoher Flussdichte im Bereich der weichen Röntgenstrahlung ermöglichte die XPEEM– und μ–XPS–Messungen. PTCDA/Ag(111) – Wachstum und Struktur der ersten beiden Lagen Das ausgiebig untersuchte Modellsystem PTCDA/Ag(111) sorgt nach wie vor für Überraschungen. So konnte bei den vorgestellten Untersuchungen der Einfluss der Morphologie auf den Wachstumsprozess der ersten beiden Lagen detailliert beobachtet werden. Monoatomare Ag–Stufen fungieren dabei als T–abhängige Diffusionsbarrieren für die PTCDA–Moleküle in der ersten Lage. Hingegen ist die Diffusion von Molekülen der zweiten Lage über Domänengrenzen der ersten Lage hinweg leicht möglich, wenngleich PTCDA–Domänengrenzen der ersten ML auch für Kristallite in der zweiten Lage begrenzend sind. Das unterschiedliche Domänenwachstumsverhalten wird dadurch erklärt, dass die Wechselwirkungsstärke zwischen zweiter und erster Lage gegenüber der zwischen erster Lage und Ag(111) reduziert ist und dass benachbarte Domänen unterschiedliche Struktur aufweisen. Ein zweiter Teilaspekt beleuchtet den Polymorphismus der zweiten Lage PTCDA auf Ag(111). Neuartige Domänen zeigen nicht nur einen ungewöhnlichen, linear variierenden Kontrast, sondern auch anisotropes Wachstum in einem weiten Temperaturbereich, bevorzugt entlang der sogenannten ’Ripple’. Mit μ–LEED wurde die neue kristallographische Über–Überstruktur charakterisiert. Zudem wurden in Dunkelfeld-LEEM zwei unterschiedliche Rotationsdomänen auf einer einzelnen Substratdomäne beobachtet. Die Abmessungen der Einheitszelle der Moleküle in der zweiten Lage ähneln denen der ersten Lage, sind aber gegenüber diesen um unerwartete 75° gedreht. Zur Erklärung dieser Beobachtungen wird ein Strukturmodell vorgeschlagen, das aus zwei unterschiedlichen und daher verspannt gestapelten PTCDA–Domänen besteht. Derartige Domänen wachsen bevorzugt entlang der „Ripples“ und damit entlang der kurzen Diagonalen der vorgeschlagenen Über-Überstruktur auf. Die vorhergesagten Orientierungen der „Ripples“ wurden ebenfalls nachgewiesen. Der linienförmige Kontrast in der zweiten Lage wird durch eine Oszillation des Lagenabstandes erklärt. CdSe/ZnSe – Rückwirkende Strukturbildung durch Sublimation einer α–Te-Deckschicht Weiterhin wurde die Bildung von CdSe-Quantenpunkten (QD) aus verspannten CdSe/ZnSe(001)-Schichten untersucht, die sich bei Sublimation der Te-Schicht reorganisieren. In Pilotexperimenten mit einem Spektromikroskop an CdSe/ZnSe-Heterostrukturen wurden sowohl der Bildungsprozess der Quantenstrukturen selbst detailliert untersucht, als auch die Tauglichkeit des Kontaminationsschutzes sorgfältig verifiziert. Die in-situ Sublimation der mikromorphen Te-Deckschicht, Auslöser für die QD-Bildung, erfordert ausreichend hohe Heizraten. Schrittweise wurden die Deckschicht, der Desorptionsprozess und die resultierende Oberfläche mit den Quantenstrukturen unter die Lupe genommen. Die als α-Te abgeschiedene Kappe weist eine Vielzahl von Strukturen auf, welche als Löcher, Risse und Mikrokristallite in einer α-Te Matrix identifiziert und charakterisiert wurden. Durch die Echtzeitbeobachtung des Desorptionsprozesses konnten die Positionen der Strukturen in der Kappe mit den zurückbleibenden bzw. neu entstehenden Strukturen wie den Quantenpunkten korreliert werden. Aus der relativen Anordnung der Strukturen wird gefolgert, dass die Präsenz von Tellur bei der Bildung der Quantenpunkte eine wichtige Rolle spielt. Verschiedene Erklärungsansätze wie zum Beispiel die Wirkung als „Surfactant“, Erhöhung der Diffusion und spannungsinduzierte Nukleation werden diskutiert. Die LEED-Charakterisierung der QD-besetzten CdSe-Oberfläche erlaubt die Korrelation mit den kristallographischen Richtungen des Substrats. Das XPEEM-signal weist auf Cd–Segregation unter den Löchern hin, lässt aber auch die Deutung als Cd-terminierte Oberflächenrekonstruktion zu. Damit ist ein erster, wichtiger Schritt zur detaillierten Aufklärung des Reorganisationsprozesses des komplexen Schichtsystems bei der Bildung von selbstorganisierten Quantenpunkten gelungen.
|
3 |
Untersuchungen zum Wachstum dünner NiSi 2-x Al x - und NiSi 2-x Ga x -Schichten auf Si(001)Allenstein, Frank, January 2007 (has links)
Chemnitz, Techn. Univ., Diss., 2007.
|
4 |
Untersuchungen zum Wachstum dünner NiSi(2-x)Al(x)- und NiSi(2-x)Ga(x)-Schichten auf Si(001)Allenstein, Frank 22 July 2007 (has links) (PDF)
Im Rahmen dieser Arbeit wurden erste Untersuchungen zur Herstellung dünner NiSi(2-x)Al(x)- bzw. NiSi(2-x)Ga(x)-Schichten auf Si(001) erbracht.
Dazu wurden Ni-Si-Al-Schichten mittels DC-Magnetron-Sputtern sowie Ni-Si-Ga-Schichten mittels Molekular-Strahl-Epitaxie (MBE) abgeschieden und anschließend in Abhängigkeit von der Herstellungsprozedur in einer RTA-Anlage thermisch behandelt.
Die so entstandenen Reaktionsschichten wurden anschließend mittels RBS charakterisiert, wobei zusätzlich REM-, TEM-, AES-Tiefenprofil- und XRD-Untersuchungen ergänzend genutzt wurden.
Es zeigt sich, dass unabhängig von der Abscheideprozedur bei ausreichend hoher Temper- bzw. Substrattemperatur die thermodynamisch stabilen Endphasen NiSi(2-x)Al(x) bzw. NiSi(2-x)Ga(x) gebildet werden.
Während die Bildungstemperatur bei Festphasenreaktionen ohne Al- bzw. Ga-Zugabe für NiSi2 etwa 700°C beträgt, reduziert sich diese unter Anwesenheit von Al- bzw. Ga-Atomen auf 500°C und darunter.
Dabei scheinen bereits eine Al- bzw. Ga-Konzentration von unter einem Atomprozent als notwendiger Stoffmengenanteil auszureichen.
Befindet sich der Ort der Keimbildung der NiSi(2-x)Al(x)- bzw. NiSi(2-x)Ga(x)-Kristallite an der Grenzfläche zum Si(001)-Substrat, so ist eine Änderung der bevorzugten Wachstumsorientierung von NiSi(2-x)Al(x)(001)[100] || Si(001)[100] bzw. NiSi(2-x)Ga(x)(001)[100] || Si(001)[100] (A-Typ) zu einer NiSi(2-x)Al(x)(220) || Si(001)- bzw. NiSi(2-x)Ga(x)(220) || Si(001)-Vorzugsorientierung festzustellen.
Die dafür notwendige Konzentration von Al- bzw. Ga-Atomen scheint jedoch höher zu sein als die, die für die Erniedrigung der Bildungstemperatur notwendig ist.
|
5 |
Untersuchungen zum Wachstum dünner NiSi(2-x)Al(x)- und NiSi(2-x)Ga(x)-Schichten auf Si(001)Allenstein, Frank 12 January 2007 (has links)
Im Rahmen dieser Arbeit wurden erste Untersuchungen zur Herstellung dünner NiSi(2-x)Al(x)- bzw. NiSi(2-x)Ga(x)-Schichten auf Si(001) erbracht.
Dazu wurden Ni-Si-Al-Schichten mittels DC-Magnetron-Sputtern sowie Ni-Si-Ga-Schichten mittels Molekular-Strahl-Epitaxie (MBE) abgeschieden und anschließend in Abhängigkeit von der Herstellungsprozedur in einer RTA-Anlage thermisch behandelt.
Die so entstandenen Reaktionsschichten wurden anschließend mittels RBS charakterisiert, wobei zusätzlich REM-, TEM-, AES-Tiefenprofil- und XRD-Untersuchungen ergänzend genutzt wurden.
Es zeigt sich, dass unabhängig von der Abscheideprozedur bei ausreichend hoher Temper- bzw. Substrattemperatur die thermodynamisch stabilen Endphasen NiSi(2-x)Al(x) bzw. NiSi(2-x)Ga(x) gebildet werden.
Während die Bildungstemperatur bei Festphasenreaktionen ohne Al- bzw. Ga-Zugabe für NiSi2 etwa 700°C beträgt, reduziert sich diese unter Anwesenheit von Al- bzw. Ga-Atomen auf 500°C und darunter.
Dabei scheinen bereits eine Al- bzw. Ga-Konzentration von unter einem Atomprozent als notwendiger Stoffmengenanteil auszureichen.
Befindet sich der Ort der Keimbildung der NiSi(2-x)Al(x)- bzw. NiSi(2-x)Ga(x)-Kristallite an der Grenzfläche zum Si(001)-Substrat, so ist eine Änderung der bevorzugten Wachstumsorientierung von NiSi(2-x)Al(x)(001)[100] || Si(001)[100] bzw. NiSi(2-x)Ga(x)(001)[100] || Si(001)[100] (A-Typ) zu einer NiSi(2-x)Al(x)(220) || Si(001)- bzw. NiSi(2-x)Ga(x)(220) || Si(001)-Vorzugsorientierung festzustellen.
Die dafür notwendige Konzentration von Al- bzw. Ga-Atomen scheint jedoch höher zu sein als die, die für die Erniedrigung der Bildungstemperatur notwendig ist.
|
Page generated in 0.0645 seconds