121 |
Warehouse Redesign Process: A case study at Enics Sweden ABDaraei, Maryam January 2013 (has links)
Nowadays warehousing became one of the most important and critical part in supply chain systems due to the fact that it consumes a considerable part of logistic cost. Designing phase of warehousing system is the most important part in warehousing since most of the strategic and tactical decisions should be taken in this phase. Majority of academic papers are primarily analysis oriented and does not give a systematic method and techniques as a basis for warehouse redesign. So there is a need to develop a structured procedure that can be applied for different type of warehouses. Therefore the purpose of this thesis is to develop a process for redesigning production warehouses, and analyzing major problems during redesign steps. The thesis is designed as a case study, and a mix of quantitative and qualitative methods were used for data collection and data analysis. The methodology focuses around the warehousing process and redesign steps as described in the literature. Results of the thesis develop a seven steps procedure for redesigning of the production warehouse, also different problems and challenges are faced during redesign steps. It was tried to choose the best redesigning method which fit with the characteristics of the warehouse, in order to cover the space reduction of the warehouse with the consideration of existing facilities and reducing of cost. In addition, the performance of the current warehouse system was evaluated based on current design of the warehouse in order to avoid repeating of same mistake in redesign process. Storage assignment policy as one of the redesign steps was discussed and a framework for storage system of the components were suggested. The findings of the thesis to some extent can be applicable to other production warehouses. Further research is suggested for more specific results and new developed redesign methods for all types of warehouses.
|
122 |
Supporting Data Warehouse Design with Data Mining ApproachTsai, Tzu-Chao 06 August 2001 (has links)
Traditional relational database model does not have enough capability to cope with a great deal of data in finite time. To address these requirements, data warehouses and online analytical processing (OLAP) have emerged. Data warehouses improve the productivity of corporate decision makers through consolidation, conversion, transformation, and integration of operational data, and supports online analytical processing (OLAP). The data warehouse design is a complex and knowledge intensive process. It needs to consider not only the structure of the underlying operational databases (source-driven), but also the information requirements of decision makers (user-driven). Past research focused predominately on supporting the source-driven data warehouse design process, but paid less attention to supporting the user-driven data warehouse design process. Thus, the goal of this research is to propose a user-driven data warehouse design support system based on the knowledge discovery approach. Specifically, a Data Warehouse Design Support System was proposed and the generalization hierarchy and generalized star schemas were used as the data warehouse design knowledge. The technique for learning these design knowledge and reasoning upon them were developed. An empirical evaluation study was conducted to validate the effectiveness on the proposed techniques in supporting data warehouse design process. The result of empirical evaluation showed that this technique was useful to support data warehouse design especially on reducing the missing design and enhancing the potentially useful design.
|
123 |
Strategische Planung mit Data-Warehouse-Systemen /Navrade, Frank. January 2008 (has links) (PDF)
Universiẗat Campus Duisburg, Diss.--Duisburg-Essen, 2007.
|
124 |
Metadatendesign zur Integration von Online Analytical Processing in das Wissensmanagement /Marquardt, Justus. January 2008 (has links)
Univ., Diss.--Hamburg, 2007.
|
125 |
Szenario-Technik mit einem future warehouse : ein Beitrag zur Zukunftssicherung von Unternehmensgründungen /Zühlsdorff, Diana. Unknown Date (has links)
Bremen, Universiẗat, Diss., 2009.
|
126 |
Organisatorische Gestaltung des unternehmensweiten Data Warehousing : Konzeption der Rollen, Verantwortlichkeiten und Prozesse am Beispiel einer Schweizer Universalbank /Meyer, Markus January 2000 (has links) (PDF)
Diss. Nr. 2424 Wirtschaftswiss. St. Gallen. / Literaturverz.
|
127 |
Referenzprozesse für die Wartung von Data-Warehouse-Systemen /Herrmann, Clemens. January 2006 (has links) (PDF)
Diss. Nr. 3165 Wirtschaftswiss. St. Gallen, 2006. / Literaturverz.
|
128 |
Business intelligence aus Kennzahlen und Dokumenten : Integration strukturierter und unstrukturierter Daten in entscheidungsunterstützenden Informationssystemen /Bange, Carsten. January 2004 (has links)
Thesis (doctoral)--Universiẗat, Würzburg, 2003.
|
129 |
[en] HEURISTICS FOR DATA WAREHOUSE REQUIREMENTS ELICITATION USING PERFORMANCE INDICATORS / [pt] HEURÍSTICAS PARA IDENTIFICAÇÃO DE REQUISITOS DE DATA WAREHOUSE A PARTIR DE INDICADORES DE DESEMPENHOELAINE ALVES DE CARVALHO 09 February 2010 (has links)
[pt] As organizações se deparam com uma necessidade cada vez maior de
mudar e evoluir, mas para isso elas precisam tomar as decisões corretas. Para
essa tomada de decisão, as empresas estão adotando os recursos
disponibilizados pela Tecnologia da Informação (TI) como parte fundamental
para apoiar suas decisões. Um componente de TI essencial para aprimorar o
processo de tomada de decisão é o data warehouse. Para cumprir bem o seu
papel, o data warehouse deve ser bem definido. Embora existam diversas
abordagens que buscam melhorar a tarefa de identificação dos requisitos para
data warehouses, poucas exploram as contribuições da Engenharia de
Processos de Negócios (EPN) no processo de definição dos requisitos. Esta
dissertação estuda um meio de aprimorar a tarefa de elicitação de requisitos
para data warehouses, utilizando indicadores de desempenho aliados aos
processos de negócio. Para isso é sugerido um conjunto de heurísticas que
visam, a partir dos indicadores de desempenho, orientar a descoberta dos
requisitos de data warehouse. A aplicação das heurísticas propostas é feita em
um caso, facilitando a compreensão da abordagem sugerida nesse trabalho. / [en] Organizations need to change and evolve, but for that it is necessary to
make the right decisions. For this decision, companies are using Information
Technology (IT) as a fundamental part to support their decisions. An essential IT
component to improve the process of decision making is the data warehouse. In
order to fulfill its role well, the data warehouse must be well defined. There are
various approaches that try to improve the task of identifying data warehouses
requirements, but few explore the contributions of Business Processes
Engineering (BPE) in the process of requirements gathering. This dissertation
studies how to improve data warehouses requirements elicitation using
performance indicators allied to business processes. For this it is suggested a set
of heuristics designed to guide performance measures identification and data
warehouse requirements discovery. The heuristics are applied in a case to
facilitate understanding of suggested approach in this work.
|
130 |
[en] KNOWLEDGE SEARCH IN DATABASES / [pt] BUSCA DE CONHECIMENTOS EM BASES DE DADOSCIBELE LUZANA REIS 27 December 2007 (has links)
[pt] Esta dissertação investiga a aplicação de Redes Neurais e
Algoritmos Genéticos como ferramentas para retirar
conhecimentos, em forma de regras, de um Banco de Dados.
Essa nova área, KDD (knowledge Discovery in Database),
surgiu com a necessidade de se desenvolver ferramentas que
possam, de forma automática e inteligente, ajudar aos
analistas de dados a transformar grandes volumes de dados
em informações e organizar estas informações em
conhecimentos úteis.
A pesquisa aqui resumida é portanto, um
desenvolvimento na área de sistemas de computação
(desenvolvimento de sistemas) e na área de inteligência
computacional (data mining, algoritmos genéticos, redes
neurais, interfaces inteligentes, sistemas de apoio a
decisão, criação de bases de conhecimentos) O trabalho de
tese foi dividido em cinco partes principais: um estudo
sobre o processo KDD; um estudo da estrutura dos sistemas
de KDD encontrados na literatura; o desenvolvimento de
sistemas de KDD, um utilizando algoritmos Genéticos e os
outros utilizando Redes Neurais; o estudo de casos e a
análise de desempenho dos sistemas desenvolvidos.
O processo de KDD serve para que se possa retirar
novos conhecimentos (padrões, tendências, fatos,
probabilidade, associações) de um determinado banco de
dados. Basicamente o KDD consiste em oito etapas, que são:
Definição do problema, Seleção dos dados, Limpeza dos
dados, enriquecimento dos dados, Pré-processamento dos
dados, Codificação dos dados, Mineração dos dados (data
mining) e o relatório contendo a interpretação dos
resultados. A mineração dos dados é freqüentemente vista
como elemento chave do processo de KDD. A extração do
conhecimento, propriamente dita, se dá na Mineração dos
dados, onde toda técnica que ajude a extrair mais
informações dos dados é útil. Assim na Mineração de dados
podemos lançar mão de um grupo heterogêneo de técnicas,
como por exemplo, Técnicas de estatísticas, visualização
dos dados, redes neurais e algoritmos genéticos. Portanto
os estudos do processo inclui estudos sobre Data Mining,
aprendizado de máquinas, data warehouse, o processo e o
ambiente do KDD, aspectos formais dos algoritmos de
aprendizado, inteligência artificial, e algumas aplicações
na vida real.
Dentre os vários sistemas de KDD encontrados na
literatura que foram estudados e analisados, podemos citar
sistemas que utilizaram, na etapa de mineração dos dados,
uma ou mais das seguintes técnicas de computação para
extrair padrões e associações nos dados, uma ou mais das
seguintes técnicas de computação para extrair padrões e
associações nos dados tais como: Visualização dos dados,
ferramenta de consulta, técnicas de estatísticas,
processamento analítico on-line (OLAP), Árvore de decisão,
regras de associação, redes neurais e algoritmos genéticos.
Neste trabalho foram desenvolvidos dois sistemas
de KDD. Em cada um dos modelos desenvolvidos utilizou-se
uma técnica de visualização dos dados para garantir a
interação do sistema com o analista dos dados. Além disso
utilizou-se, na etapa mineração dos dados, num dos modelos
Algoritmos genéticos, e no outro Redes Neurais
Backpropagation. Também para efeito de comparação e de
apoio, se desenvolveu um sistema utilizando Técnicas de
Estatísticas.
Com o modelo utilizando Algoritmos Genéticos se
encontra a melhor regra de produção relacionada a um banco
de dados, que responde a uma pergunta específica. E com os
modelos utilizando Redes Neurais se obtém resultados para
serem comparados.
A fase de aplicação consistiu em analisar dois
diferentes bancos de dados, um contendo dados dos meninos
e meninas de rua, e o outro contendo dados dos alunos que
se matricularam no vestibular. Na análise dos bancos de
dados se utilizou os sistemas de KDD aqui desenvolvidos,
tendo como objetivo encontrar, com o auxílio de Algoritmos
genéticos, ou de redes ne / [en] This dissertation investigates the genetic algorithms and
neural networks as applications tools to find knowledge,
in the form of rules, from a database. This new area, KDD
(Knowledge Discovery in Database) appeared with the need
of developing tools that can, in automatic and intelligent
way, help the data analysis to transform great volumes of
data in information and to organize these information in
useful knowledge.
The research here summarized is therefore, a
development in the area of computational systems
(development of systems) and in the area of intelligence
computational (data mining, genetic algoriths, neural
networks, intelligence interfaces, decision support
systems and creation of knowledge bases). The thesis work
was divided in five main parts: A study of the KDD
process: a study of the structure of the KDD systems found
in the literature; the development of KDD systems, one
using genetic algorithms and the others using neural
networks; the study of cases and the analysis of the
performance of the developed systems.
The KDD process is able to find new knowledge
(patterns, tendencies, facts, probability and
associations) from a certain database. Basically KDD
involves eight steps, that are: problem definition, data
selection, cleaning, enrichment, preprocessing, coding,
data mining and the reporting containing the
interpretation of the results. The Data Mining is
frequently seen as the key element of the KDD process. The
extraction of the knowledge, itself, happens in the Data
mining, where any technique that helps extract more
information out of your data is useful. In Data Mining we
can make use of a heterogeneous group of techiques, for
example, Statistical techniques, Visualization techniques,
Neural Networks and Genetic algorithms. Therefore the
studies of the KDD process included studies on data
mining, machine learning, data warehouse, the KDD process
and the KDD environment, formal aspects of the learning
algoriths, artificial intelligence, and some applications
in the real life.
In several KDD systems found in the literature
that were studied and analyzed, we can mention systems
that uses, in the data mining step, one or more of
following computation techniques to extract patterns and
associations from data as: visualization techniques, query
tools, statistical techniques, online analytical
processing (OLAP), decision trees, association rules,
neural networks and genetic algorithms.
In this work two KDD systems wer developed. In
each one of the developed models a visualization
techniques was used, to guarantee the interaction of the
system with the data analyst. And in the Data Mining step,
genetic algorithms was used in one of the models, and
Backpropagation Neural Networks in the other. For
comparison and support effect, a system was developed
using Statistical techniques.
The genetic algorithm model is to find the best
production rule related to a database, that answers to a
specific question. And the results of the Neural Networks
model is to be compared with the results of the genetic
algorithm model.
The application phase consisted of analyzing two
different databases, one with the boys´data that lives in
the street, and the other with the students´data that
makes the university admission test. In the analysis of
the databases it was used the KDD system here developed,
with the objective to find, with genetic algorithms, or
Neural Network, the best production rule, related to the
databases, that answers a specific question. Two types of
question. Two types of question were considered, the ones
that look for characteristic of a group of data, for
example, Which the boys characteristics that live in the
streets? And Which the characteristics of a group of
individuals that were classified but they didn´t enroll in
the university? And that associates groups of data, for
example, What differentiate the boys, with similar
economic situation, tha
|
Page generated in 0.0448 seconds