• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 7
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 25
  • 14
  • 11
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Surface Engineering of Bipolar Plates for PEM-Water Electrolysis : Cost-Effective Corrosion Protection

Dettke, Tristan January 2021 (has links)
Hydrogen production by PEM-Water electrolysis is an environmentally benign and promising approach to store excess energy from renewable energy sources but facing drawbacks of high costs, mainly due to a harsh cell-environment. The aim of my Master Thesis was to reduce the costs of the most expensive cell component, the bipolar plate by surface engineering. Thin films of Ti, Zr and alloys thereof, as well as Nb and W have been vapor deposited by either cathodic arc deposition or magnetron sputtering in an industrial scale coating system. The nitrides, carbides, and pure metals from the previously mentioned transition metals were investigated by crosscut adhesion tests, interfacial contact resistance, electrochemical corrosion tests, scanning electron microscopy and energy dispersive X-ray spectroscopy. Highly promising thin film materials have been developed to functionalize the bipolar plates, enabling significant cost reductions of the PEMWE-cell.
52

Synthesis and Characterization of Linear and Crosslinked Sulfonated Poly(arylene ether sulfone)s: Hydrocarbon-based Copolymers as Ion Conductive Membranes for Electrochemical Systems

Daryaei, Amin 26 June 2017 (has links)
Sulfonated poly(arylene ether sulfone)s as ion conductive copolymers have numerous potential applications. Membranes cast from these copolymers are desirable due to their good chemical and thermal stability, excellent mechanical strength, satisfactory conductivity, and excellent transport properties of water and ions. These copolymers can be used in a variety of topologies. Structure-property-performance relationships of these membranes as candidates for electrolysis of water for hydrogen production and for purification of water from dissolved ions have been studied. Linear and multiblock sulfonated poly(arylene ether sulfone)s are potential alternative candidates to Nafion membranes for hydrogen gas production via electrolysis of water. In this investigation, these copolymers were prepared from the direct polymerization of di-sulfonated and non-sulfonated comonomers with bisphenol monomers. In systematic investigations, a series of copolymers with modified properties were synthesized and characterized by changing the ratio of the sulfonated/non-sulfonated comonomers in each reaction. These copolymers were investigated in terms of mechanical stability, proton conductivity and H2 gas permeability at a range of temperatures and under fully hydrated conditions. A multiblock copolymer was synthesized and evaluated for its potential as membranes for electrolysis of water and for fuel cell applications. The multiblock copolymer contained some fluorinated repeat units in the hydrophobic blocks, and these were coupled with a fully disulfonated hydrophilic block prepared from 3,3'-disulfonate-4,4'-dichlorodiphenyl sulfone and biphenol. After annealing, the multiblock copolymer showed enhanced proton conductivity and a more ordered morphology in comparison to the random copolymer counterparts. At 90 oC and under fully hydrated conditions, improved proton conductivity and controlled H2 gas permeability was observed. Finally, the performance of the multiblock copolymer, which was measured as the ratio of proton conductivity to H2 gas permeability, was improved when compared to the state-of-the-art membrane, Nafion 212, by a factor of 3. In another systematic study, two series of random copolymers were synthesized and characterized, and then cast into membranes to evaluate for electrolysis of water. One series contained solely hydroquinone as the phenolic monomer, while the second series contained a mixture of resorcinol and hydroquinone as phenolic comonomers. The polymers that contained only the hydroquinone monomer showed exceptionally good mechanical properties due to the para-substituted comonomer in the composition of the polymer. In the resorcinol-hydroquinone series, gas permeability was constrained due to the presence of 25% of the meta-substituted comonomer incorporated into its structure. Low gas permeability and high proton conductivity at elevated temperatures were obtained for both the linear random and multiblock copolymers. Performance of these copolymers was superior to Nafion at elevated temperatures (80-95°C). In order to enhance the durability of these materials in their hydrated states at elevated temperatures, the surfaces of these copolymer films were treated with fluorine gas. In comparison with pristine non-fluorinated membranes, the modified membranes showed decreased water uptake and longer durability in Fenton's reagent. A series of linear and crosslinked copolymers were investigated with respect to their potential for use as membranes for desalination of water by electrodialysis and reverse osmosis. The crosslinked membranes were prepared by reacting controlled molecular weight, disulfonated oligomers that were terminated with meta-aminophenol with an epoxy reagent. The oligomers had systematically varied degrees of disulfonation and either 5000 or 10,000 Da controlled molecular weights. Membrane casting conditions were established to fabricate highly crosslinked systems with greater than 90% gel fractions. At such a high gel fraction, the water uptake of the crosslinked membranes was lower than that of the linear biphenol-based, disulfonated random copolymer with a similar IEC. Among these series of copolymers, it was shown that the crosslinked membranes cast from the oligomers with 50% degree of disulfonation and a molecular weight of 10,000 Da had the lowest salt permeability of 10-8 cm2/sec. For desalination applications, a comonomer was synthesized with one sulfonate substituent on 4,4'-dichlorodiphenyl sulfone. This new monosulfonated comonomer allows for even distribution of the ions on the linear copolymer backbone, and this may be important for controlling ion transport. Mechanical tests were conducted on the membranes while they were submerged in a water bath. The ultimate strength of a fully hydrated copolymer with an IEC of 1.36 meq/g was approximately 60 MPa with an elongation at break of 160%. Moreover, in a monovalent/divalent mixed salt solution, the monosulfonated linear copolymer exhibited a constant Na+ passage of less than 1.0%. / Ph. D. / Purification systems have become an increasingly important scientific and technological need for millions around who face water shortages and/or impure sources of potable water. In response, water purification and hydrogen gas production have been widely used to produce pure products from a variety of water sources. In general, current state-of-the-art methods in separation technologies feature two major drawbacks: they are energy intensive and costly processes. In response to the growing need for purified water or pure hydrogen gas for energy generation, polymeric materials are increasingly used in the form of membranes to produce a purer product and overcome the hindrances associated with current energy intensive and inefficient methods. These membranes serve as a barrier for unwanted species, while at the same time allowing the desired species to pass through. Under proper conditions, these purification or chemical processes would generate pure materials that can be used on demand. The chemistry of candidate polymeric materials is extremely important to design a membrane with desired properties. Therefore, the principal goals of this investigation were to synthesize polymers for use as membranes in three areas: 1) Electrolysis of water for ultra-pure hydrogen gas generation 2) Fuel cells applications for electricity generation, and 3) Desalination of water to provide drinking water. For each technology, a series of sulfonated poly(arylene ether sulfone) copolymers were synthesized and characterized. By applying different monomers or chemistries, a range of appropriate copolymers were synthesized whose characteristics varied in topology and architecture, depending on the desired application. Once these copolymers were synthesized, they were cast into membranes under proper established conditions. In addition, the structure-property-performance relationship of these sulfonated polysulfone membranes were further investigated to provide a direction for future studies.
53

A comparison of catalyst application techniques for membrane electrode assemblies in SO2 depolarized electrolysers / Dreyer H.M.E.

Dreyer, Herbert Morgan Evans January 2011 (has links)
Hydrogen production via the electrolysis of water has gained a lot of attention in the last couple of years. Research related to electrolysers is mostly aimed towards decreasing the noble–metal catalyst content. In this study the presently used catalyst application techniques were reviewed and critically examined to find commercially applicable and effective methods. Selected methods were then practically applied to determine their feasibility and to gain “know–how” related to the practical application of these techniques. The selected techniques were the hand paint, inkjet print, screen print and spray paint techniques. Meaningful comparisons were made between the methods in terms of parameters such as practicality, waste of catalyst and microstructure. The results point out that the hand paint and spray paint methods are feasible methods although there are improvements to be made. The hand paint method was improved by applying a carbon micro porous layer to the gas diffusion layer before the painting is carried out. The addition of the carbon layer reduced the soaking of the catalyst–containing ink through the gas diffusion layer. A method not initially investigated was identified an evaluated and showed promising results in lowering the mass of catalyst applied. This method comprised of sputtering a layer of catalyst material onto a prepared gas diffusion layer. It also came to light from the results that electrodes, and therefore membrane electrode assemblies, can be produced at a much lower cost than the commercial available membrane electrode assemblies. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2012.
54

A comparison of catalyst application techniques for membrane electrode assemblies in SO2 depolarized electrolysers / Dreyer H.M.E.

Dreyer, Herbert Morgan Evans January 2011 (has links)
Hydrogen production via the electrolysis of water has gained a lot of attention in the last couple of years. Research related to electrolysers is mostly aimed towards decreasing the noble–metal catalyst content. In this study the presently used catalyst application techniques were reviewed and critically examined to find commercially applicable and effective methods. Selected methods were then practically applied to determine their feasibility and to gain “know–how” related to the practical application of these techniques. The selected techniques were the hand paint, inkjet print, screen print and spray paint techniques. Meaningful comparisons were made between the methods in terms of parameters such as practicality, waste of catalyst and microstructure. The results point out that the hand paint and spray paint methods are feasible methods although there are improvements to be made. The hand paint method was improved by applying a carbon micro porous layer to the gas diffusion layer before the painting is carried out. The addition of the carbon layer reduced the soaking of the catalyst–containing ink through the gas diffusion layer. A method not initially investigated was identified an evaluated and showed promising results in lowering the mass of catalyst applied. This method comprised of sputtering a layer of catalyst material onto a prepared gas diffusion layer. It also came to light from the results that electrodes, and therefore membrane electrode assemblies, can be produced at a much lower cost than the commercial available membrane electrode assemblies. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2012.
55

Investigation of the anodes of PEM water electrolyzers by operando synchrotron-based photoemission spectroscopy / Etude in operando d’anodes d’électrolyseurs de l'eau de type PEM par spectroscopie de photoémission avec le rayonnement synchrotron

Saveleva, Viktoriia 29 January 2018 (has links)
Le développement de catalyseurs de la réaction de dégagement de l’oxygène (OER) pour les électrolyseurs à membrane échangeuse de protons (PEM) dépend de la compréhension du mécanisme de cette réaction. Cette thèse est consacrée à l'application de la spectroscopie d’émission de photoélectrons induits par rayons X (XPS) et de la spectroscopie de structure près du front d'absorption de rayons X (NEXAFS) operando sous une pression proche de l'ambiante (NAP) dans le but d’étudier les mécanismes de la réaction d’oxydation de l’eau sur des anodes à base d’iridium et de ruthénium et leurs dégradation dans les conditions de la réaction. Cette thèse montre les mécanismes différents de la réaction OER pour les anodes à base d’Ir et de Ru impliquant respectivement des transitions anioniques (formation d’espèce OI- électrophile) ou cationiques (formation des espèces de Ru avec l’état d'oxydation supérieur à IV) quelle que soit la nature (thermique ou électrochimique) des oxydes. / Development of oxygen evolution reaction (OER) catalysts for proton exchange membrane water electrolysis technology depends on the understanding of the OER mechanism. This thesis is devoted to the application of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and near edge X-ray absorption fine structure (NEXAFS) techniques for operando investigation of the Ir, Ru - based anodes. For Ru-based systems, we observe the potential-induced irreversible transition of Ru (IV) from an anhydrous to a hydrated form, while the former is stabilized in the presence of Ir. Regarding single Ir-based anodes, the analysis of O K edge spectra reveals formation of electrophilic oxygen OI- as an OER intermediate. Higher stability of Ir catalysts supported on antimony-doped tin oxide (ATO) is related to their lower oxidation. This work demonstrates different OER mechanisms on Ir, Ru-based anodes involving anion and cation red-ox chemistry, correspondingly, regardless the oxide nature.
56

An airports’ need of change to go 100% green using an energy storage system and solar power : Integration of energy storage system and photovoltaics to an existing system

Törnberg, Carl January 2022 (has links)
This thesis explores what Karlstad Airport needs to go 100% green. Photovoltaics are assumed to be installed at the facility and a Hydrogen Energy Storage System and Battery Energy Storage System will be evaluated to reduce peaks during charging of the planes. Different power peak limits are explored as well as different sized Energy Storage Systems and later evaluated economically. A method to find the cheapest possible system is created with some assumptions and is then used to evaluate throughout the whole dataset. In the end any of the different sized Energy Storage Systems reduces the profitability when considering each systems expected lifecycle.

Page generated in 0.0911 seconds