• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering aspects of calcium carbonate and magnesium hydroxide precipitation in waste water reclamation

Wiechers, Hermannus Nikolaas Sybrandus January 1978 (has links)
Includes bibliography. / This thesis attempts to resolve some of the major problems associated with lime treatment in waste water reclamation. The contribution to knowledge is briefly outlined below. One of the major problems associated with lime treatment is the instability of lime-treated effluent, which may result in serious calcium carbonate scale formation problems. In the thesis this instability is attributed to two fundamental causes, (1) Incomplete precipitation, i.e. a kinetic problem. (2) The unintentional absorption of carbon dioxide from the air by the highly alkaline lime-treated effluent, i.e. a contamination problem. Calcium carbonate and magnesium hydroxide precipitation are time dependent. As a consequence of this time dependency unstable effluent may be produced under reaction conditions commonly encountered in practice. An exhaustive study identified the major factors affecting the precipitation kinetics. Reaction system conditions required for producing a stable effluent are, (1) Lime slurry and sludge, in that sequence, must be thoroughly mixed with the waste water, preferably by means of in-line static mixers, before discharge to a completely stirred tank reactor. (2) A completely stirred tank reactor with a minimum mean residence time of two minutes must be provided for the dissolution and precipitation reactions to go as near to completion as possible. (3) The reactor contents must have a sludge concentration of the order of 10 000 mg l⁻¹.
2

Residential water reclamation in Texas : can it work?

Dent, Kelly McCaughey 21 November 2013 (has links)
Although Texas is a water reclamation leader in the country for quantity of water reclaimed, it falls behind both California and Florida in residential applications. The concept of residential reuse has some barriers to overcome prior to implementation on a broad scale in Texas. The two case studies, St. Petersburg, Florida, and the El Dorado Irrigation District of El Dorado County, California, describe extensive reuse programs in response not only to impending water shortages but also to effluent disposal limitation requirements. Major factors that limit residential reuse in Texas include the following: cost, expediency and negative public perception. Two other considerations exist when determining the feasibility of implementing residential reuse: income level and irrigation needs. Most of the successful reuse programs examined were for higher income areas. Also, irrigation expectations and needs of the residences play a major factor in the success of the program. In arid environments planted with drought-tolerant plants, landscape irrigation becomes less of a priority. Further limitations that specifically affect Texas’ expanding its water reclamation programs include the legal issues of existing water rights and direct versus indirect reuse. / text
3

The feasibility of reverse osmosis as a water reclamation process with special reference to the rejection of organic compounds

Schutte, Christiaan Frederik January 1986 (has links)
This thesis deals with water reclamation and water reuse in the South African water supply context. The overall objective of the study is to assess the potential role and feasibility of reverse osmosis as a water reclamation process. In order to achieve this objective a number of separate desk, laboratory and pilot plant studies were conducted. It was concluded from the first desk study that a significant potential role exists for reverse osmosis in the South African water economy, mainly for the treatment of industrial effluents and, in the longer term, for the reclamation of water from sewage effluents and for the treatment of effluents and recycled water in indirect water reuse situations. A cost analysis showed that reverse osmosis could become economically viable in some water reuse situations in the near future provided that a productive membrane life of about three years can be achieved and that membrane fluxes can be maintained at design rates. These findings indicated the need for a pilot plant study to determine the effects of pretreatment and membrane cleaning on flux levels and rejection. A 50 m³/d pilot plant was designed and operated for a period of about six months from which it was concluded that acceptable flux levels can be maintained in tubular reverse osmosis plants treating well-oxidized activated sludge effluent with and without extensive pretreatment, provided both chemical and physical cleaning methods are employed. The desk study on the rejection of contaminants by reverse osmosis membranes indicated the need for a simple model that can be used to predict the removal of organic compounds of interest in water reclamation applications. It was concluded from a fundamental laboratory study, which included the evaluation of existing membrane models against laboratory data, that the solvophobic theory can be adapted in a simplified form to predict the transport of dissolved organic compounds in relatively non-polar reverse osmosis membranes. Based on reverse osmosis, diffusion, sorption and desorption data a mechanism is, furthermore, proposed for the transport of phenol in different membranes.
4

The development of an in house greywater and roof water reclamation system for large institutions during 1994 to 1998

Surendran, Sundaralingam S. January 2001 (has links)
For sustainable water management, here is a necessity to consider alternatives, in addition to conventional systems. The aim of this research is to develop and demonstrate a sustainables, from and greywater reclamation system for WC flushing and it was started in 1994. In the UK there are no water quality standards for WC flushing water use. There were no design guidelines for greywater water reclamation and no published study on the supply-dernandb alance, in detail, for water recycling in institutions such as universities. The research has shown the feasibility of planned direct grey and storm water reclamation and recycling system to manage growing water and wastewater problems. This thesis is based on the information gathered from 4 universities, 3 hotels and 3 recreational centres, and experiences gained at Loughborough University during the development and demonstration of the full scale "in-house grey and roof water" reclamation and recycling systems. The water use, greywater quality and roof water characteristics were studied in detail and this information was used for the development of the reclamation and recycling system. The studies showed that the water usage at the university halls were not similar to usage in households. Unlike large water supply schemes, small in-house systems generate a large peak factor for water use. To avoid deficit, in addition to personal washing waters, a top-up of laundry wastewater or roof water, and a well-designed balancing tank is necessary. The demonstration study shows that there was no standby mains' water used, which means that the water reclaimed was sufficient for reuse. The quality characterisation study shows that the greywater and first flush storm water roof runoff were polluted. The characteristics of combined grey and roof water are suitable for biological treatment. Based on the infomation, a lab-scale unit was developed; the reactor characteristics and performance such as head losses and removal efficiency were monitored; and the unit was refined. Two novel multi-barrier reclamation systems were developed to achieve sufficient quantity and near potable quality of water with minimum maintenance and cost. During 1997 the grey and roof water recycling system with laboratory tested physical and biological reclamation processes without the use of coagulants and disinfection were installed. The performance of the treatment system was closely monitored until 1998. This provided benefits in near potable quality of reclaimed water, low head loss, reliability, failure free operation and simple maintenance. The reclaimed effluent from Project I and 2 met the UK/EU bathing water standards and was also able to meet the US EPA standards for WC flushing. The microbial (using coliform as an indicators) quality of reclaimed water without disinfection is acceptable for controlled recycling systems (carefully monitored and fully informed). There were no odour problems in the treated water or sludge blockages. Comparatively, Project I was more efficient at removing coliform, turbidity, solids (suspended, dissolved, volatile), and Project 2 better at removing carbon (organic and inorganic). A simple cost benefit analysis done for the recycling system at Royce Hall of Residence showed 10 years pay back. More detailed cost-benefit analysis including comparisons of new built and retrofit recycling system and fife cycle analysis are recommended. This study shows that most of the people questioned were accepted and were willing to consider using the recycling system for toilet flushing, if the water was clear, colourless, odour free, carried no risk and gave cost-benefits. During the demonstration stage the users willingly accepted non-potable grey water reuse.
5

Treatment of Reverse Osmosis Concentrates from Recycled Water

Arseto Yekti Bagastyo Unknown Date (has links)
Water recycling by membrane treatment is widely accepted as a leading alternative water source. This separation process creates a concentrated stream (called concentrates), containing most of the pollutants in 10%-20% of the flow; and a treated water stream. As nitrogen is a major concern, environmental regulations have become more stringent, requiring additional treatment to meet effluent standards. Other concerns include organic contaminants and potential production of halogenated organics if disinfection of the reject was applied. One option to address the problem of dissolved organic nitrogen and carbon is advanced oxidation. This oxidation could lead to degradation of refractory organic materials, which are poorly removed in conventional treatment. This project aims to evaluate treatment extent and cost of alternatives for organic (particularly nitrogen) removal in reject water addressing the following research gaps: (i) identifying the key organic pollutants present in the concentrated stream, (ii) the effectiveness and optimisation of coagulation, ion exchange and advanced oxidation; (iii) apparent cost of the different treatment methods. The untreated reverse osmosis concentrates were collected from two treatment plants:- Luggage Point, and Bundamba, both near Brisbane, Queensland, Australia. The first contains more colourful of organics than the second plant. Stirred cell fractionation with ultrafiltration membranes was used to characterise the removed key pollutants, as it offers better accuracy and reproducibility compared to centrifugation fractionation. Fluorescence spectral was used to monitor and identify specific organic compounds. The largest fraction was smaller sized <1kDa. This is probably small humic substances and fulvic acids, as indicated by Excitation Emission Matrix (EEM) analysis. A smaller portion of soluble microbial products (SMPs) also contributes to the concentrates. Bundamba contains large non coloured organics including organic nitrogen with elevated ammonia-N. In contrast, Luggage Point has higher colour, inorganic carbon and conductivity with less ammonia-N. Advanced Oxidation Process (AOP) was the most effective treatment method (high removal of organics, e.g. 55% COD of initial), followed by magnetised ion exchange (MIEX) and coagulations. For UV/H2O2 AOP, the optimal operating condition 400mg.L-1 H2O2 and 3.1kWh.m-3 energy input resulted in organics removals up to 55% with complete decolourisation. The effective reduction was found in all size ranges, preferably in >1kDa. Low inorganic carbon and salinity in Bundamba may allow better overall oxidation rates. MIEX also performed better in Bundamba with organic removals up to 43% and 80% decolourisation at the optimum resin dose of 15mL.L-1. Removal was preferential in size range of >3kDa, with more proportional percentage for decolourisation. Similarly, ferric coagulation removed a wider size range of organics. Further, ferric achieved better organic removal in Luggage Point with up to 49%. At the same molar dose (1.5mM), ferric is superior to alum, especially in Bundamba where there were less hydrophobic compounds according to EEM. Alum is poor for treatment of high organics with less coloured water. MIEX with an operational cost (chemicals and power only) of $0.14-$0.20.m-3 treated water seemed to be the most effective treatment overall. The resin achieved better results with a slightly higher cost than coagulation, and had a lower environmental impact due to reduced sludge production. AOP offers better treatment, but at a higher cost ($0.47.m-3 treated). Combined alternatives may benefit the removal effectiveness. Furthermore, more specific identification of contaminants should be investigated separately to choose appropriate treatment for priority chemicals. Another issue is further investigation of costing, including capital, and full environmental impact of treatment.
6

Commensal fecal bacteria: Population biology, diversity, and usefulness as indicator organisms in reclaimed water

Chivukula, Vasanta Lakshmi 01 June 2005 (has links)
Water treatment facilities have been relying on indicator bacteria to assess the quality of water for decades. The purpose of this group of studies is to investigate the predictive capabilities of conventional and alternative indicators for pathogenic microorganisms in disinfection processes and treated wastewater effluents. In addition, the possibility that diversity of indicator bacteria, as well as overall bacterial diversity, correlate with fecal contamination in water bodies has been investigated. Indicator organisms (total coliforms, fecal coliforms, enterococci, C. perfringens, and coliphages) as well as pathogens (enteroviruses, Giardia, and Cryptosporidium) were enumerated from six wastewater treatment facilities at various stages of treatment. Statistical analyses were conducted to determine if the indicator organisms (individually or as a set) could predict the presence or absence of pathogens. Single indicator organism analysis failed to correlate with the occu rrence pathogens, thus monitoring a suite of indicator organisms may be a better measure to predict the presence of pathogens. The product of chlorine residual concentration and contact time (CT) was identified as a factor for determining the log10 reduction of enteric viruses in wastewater treatment facilities that used chloramines for disinfection.Samples were also collected from river waters and sediments in watersheds with different human population densities to identify the impact of anthropogenic activities on bacterial diversity. 16S rRNA restriction fragment length polymorphism (RFLP), ribotyping, and denaturing gradient gel electrophoresis (DGGE) were used to determine total coliform, Escherichia coli, and bacterial community population structures, respectively. The concentrations of indicator organisms were significantly different among the river sites in sediments, but not in water column. The population diversity measurements were not significantly different among the river sites; while the indicator population and bacterial community structures were dissimilar in water column vs. associated sediment samples. Accumulation curves demonstrated that greater than 20 isolates must be sampled at most of the sites to represent the dominant populations. A better understanding of the relationship between the indicator organisms and pathogens as well as knowledge of the ecology of indicator organisms in pristine and anthropogenically impacted waters may contribute to water quality restoration and public health protection.
7

Treatment of Reverse Osmosis Concentrates from Recycled Water

Arseto Yekti Bagastyo Unknown Date (has links)
Water recycling by membrane treatment is widely accepted as a leading alternative water source. This separation process creates a concentrated stream (called concentrates), containing most of the pollutants in 10%-20% of the flow; and a treated water stream. As nitrogen is a major concern, environmental regulations have become more stringent, requiring additional treatment to meet effluent standards. Other concerns include organic contaminants and potential production of halogenated organics if disinfection of the reject was applied. One option to address the problem of dissolved organic nitrogen and carbon is advanced oxidation. This oxidation could lead to degradation of refractory organic materials, which are poorly removed in conventional treatment. This project aims to evaluate treatment extent and cost of alternatives for organic (particularly nitrogen) removal in reject water addressing the following research gaps: (i) identifying the key organic pollutants present in the concentrated stream, (ii) the effectiveness and optimisation of coagulation, ion exchange and advanced oxidation; (iii) apparent cost of the different treatment methods. The untreated reverse osmosis concentrates were collected from two treatment plants:- Luggage Point, and Bundamba, both near Brisbane, Queensland, Australia. The first contains more colourful of organics than the second plant. Stirred cell fractionation with ultrafiltration membranes was used to characterise the removed key pollutants, as it offers better accuracy and reproducibility compared to centrifugation fractionation. Fluorescence spectral was used to monitor and identify specific organic compounds. The largest fraction was smaller sized <1kDa. This is probably small humic substances and fulvic acids, as indicated by Excitation Emission Matrix (EEM) analysis. A smaller portion of soluble microbial products (SMPs) also contributes to the concentrates. Bundamba contains large non coloured organics including organic nitrogen with elevated ammonia-N. In contrast, Luggage Point has higher colour, inorganic carbon and conductivity with less ammonia-N. Advanced Oxidation Process (AOP) was the most effective treatment method (high removal of organics, e.g. 55% COD of initial), followed by magnetised ion exchange (MIEX) and coagulations. For UV/H2O2 AOP, the optimal operating condition 400mg.L-1 H2O2 and 3.1kWh.m-3 energy input resulted in organics removals up to 55% with complete decolourisation. The effective reduction was found in all size ranges, preferably in >1kDa. Low inorganic carbon and salinity in Bundamba may allow better overall oxidation rates. MIEX also performed better in Bundamba with organic removals up to 43% and 80% decolourisation at the optimum resin dose of 15mL.L-1. Removal was preferential in size range of >3kDa, with more proportional percentage for decolourisation. Similarly, ferric coagulation removed a wider size range of organics. Further, ferric achieved better organic removal in Luggage Point with up to 49%. At the same molar dose (1.5mM), ferric is superior to alum, especially in Bundamba where there were less hydrophobic compounds according to EEM. Alum is poor for treatment of high organics with less coloured water. MIEX with an operational cost (chemicals and power only) of $0.14-$0.20.m-3 treated water seemed to be the most effective treatment overall. The resin achieved better results with a slightly higher cost than coagulation, and had a lower environmental impact due to reduced sludge production. AOP offers better treatment, but at a higher cost ($0.47.m-3 treated). Combined alternatives may benefit the removal effectiveness. Furthermore, more specific identification of contaminants should be investigated separately to choose appropriate treatment for priority chemicals. Another issue is further investigation of costing, including capital, and full environmental impact of treatment.
8

Treatment of Reverse Osmosis Concentrates from Recycled Water

Arseto Yekti Bagastyo Unknown Date (has links)
Water recycling by membrane treatment is widely accepted as a leading alternative water source. This separation process creates a concentrated stream (called concentrates), containing most of the pollutants in 10%-20% of the flow; and a treated water stream. As nitrogen is a major concern, environmental regulations have become more stringent, requiring additional treatment to meet effluent standards. Other concerns include organic contaminants and potential production of halogenated organics if disinfection of the reject was applied. One option to address the problem of dissolved organic nitrogen and carbon is advanced oxidation. This oxidation could lead to degradation of refractory organic materials, which are poorly removed in conventional treatment. This project aims to evaluate treatment extent and cost of alternatives for organic (particularly nitrogen) removal in reject water addressing the following research gaps: (i) identifying the key organic pollutants present in the concentrated stream, (ii) the effectiveness and optimisation of coagulation, ion exchange and advanced oxidation; (iii) apparent cost of the different treatment methods. The untreated reverse osmosis concentrates were collected from two treatment plants:- Luggage Point, and Bundamba, both near Brisbane, Queensland, Australia. The first contains more colourful of organics than the second plant. Stirred cell fractionation with ultrafiltration membranes was used to characterise the removed key pollutants, as it offers better accuracy and reproducibility compared to centrifugation fractionation. Fluorescence spectral was used to monitor and identify specific organic compounds. The largest fraction was smaller sized <1kDa. This is probably small humic substances and fulvic acids, as indicated by Excitation Emission Matrix (EEM) analysis. A smaller portion of soluble microbial products (SMPs) also contributes to the concentrates. Bundamba contains large non coloured organics including organic nitrogen with elevated ammonia-N. In contrast, Luggage Point has higher colour, inorganic carbon and conductivity with less ammonia-N. Advanced Oxidation Process (AOP) was the most effective treatment method (high removal of organics, e.g. 55% COD of initial), followed by magnetised ion exchange (MIEX) and coagulations. For UV/H2O2 AOP, the optimal operating condition 400mg.L-1 H2O2 and 3.1kWh.m-3 energy input resulted in organics removals up to 55% with complete decolourisation. The effective reduction was found in all size ranges, preferably in >1kDa. Low inorganic carbon and salinity in Bundamba may allow better overall oxidation rates. MIEX also performed better in Bundamba with organic removals up to 43% and 80% decolourisation at the optimum resin dose of 15mL.L-1. Removal was preferential in size range of >3kDa, with more proportional percentage for decolourisation. Similarly, ferric coagulation removed a wider size range of organics. Further, ferric achieved better organic removal in Luggage Point with up to 49%. At the same molar dose (1.5mM), ferric is superior to alum, especially in Bundamba where there were less hydrophobic compounds according to EEM. Alum is poor for treatment of high organics with less coloured water. MIEX with an operational cost (chemicals and power only) of $0.14-$0.20.m-3 treated water seemed to be the most effective treatment overall. The resin achieved better results with a slightly higher cost than coagulation, and had a lower environmental impact due to reduced sludge production. AOP offers better treatment, but at a higher cost ($0.47.m-3 treated). Combined alternatives may benefit the removal effectiveness. Furthermore, more specific identification of contaminants should be investigated separately to choose appropriate treatment for priority chemicals. Another issue is further investigation of costing, including capital, and full environmental impact of treatment.
9

ANALYSIS OF NITROGEN DYNAMICS IN SOIL COLUMNS TO EVALUATE NITRATE POLLUTION DUE TO RECLAIMED WASTEWATER IRRIGATION / 下水再生水の灌漑利用による硝酸汚染評価のための土壌カラム中の窒素動態の解析 / ゲスイ サイセイスイ ノ カンガイ リヨウ ニ ヨル ショウサン オセン ヒョウカ ノ タメ ノ ドジョウ カラムチュウ ノ チッソ ドウタイ ノ カイセキ

DAYANTHI, WANNIARACHCHI KANKANAMGE CHANDRANI NEETHA 25 September 2007 (has links)
学位授与大学:京都大学 ; 取得学位: 博士(工学) ; 学位授与年月日: 2007-09-25 ; 学位の種類: 新制・課程博士 ; 学位記番号: 工博第2851号 ; 請求記号: 新制/工/1419 ; 整理番号: 25536 / Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第13380号 / 工博第2851号 / 新制||工||1419(附属図書館) / 25536 / UT51-2007-Q781 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 田中 宏明, 教授 藤井 滋穂, 教授 清水 芳久 / 学位規則第4条第1項該当
10

Improving Evaporation Rate of Mine Wastewater

Khumalo, Londiwe Thandeka Precious January 2018 (has links)
Magister Scientiae - MSc (Biotechnology) / The treatment of mine water at the eMalahleni Water Reclamation Plant (EWRP) results in the production of large volumes of brine. Different brine management methods have been applied to dispose the brine but the evaporation pond method is regarded as the cheaper, most effective and less laborious method for brine disposal. Brine wastewater is pumped into the pond where it evaporates resulting in the mixture of salts. The rate at which evaporation occurs is influenced by many factors such as temperature, salinity, humidity and wind. Due to high salinities in brine the EWRP is currently experiencing a challenge with low evaporation rate. Here, a comparative study was done to determine the efficiency of using a chemical and a biological approach to enhance the evaporation rate of reject brine. The chemical approach involved the addition of various concentrations of methylene blue dye (100 to 300 ppm with 50 ppm increments) to 1L volumes of brine, and measuring the evaporation rate. On the other hand, the biological approach involved the isolation of pigmented halophilic bacteria from eMalahleni brine and Cerebos salt samples. Isolated bacterial strains were characterised based on their morphology, biochemical and salt tolerance characteristics. Furthermore, the strains were identified using 16S rRNA gene sequence analysis. Among the isolated halophilic bacterial strains, EP-3, an Arthobacter agilis isolated from the eMalahleni brine produced a darker pigment compared to the other strains. Therefore, EP-3 was evaluated for its effect on the evaporation of brine using a culture inoculum or the addition pigment extracted from an EP-3 culture. The addition of MB above 100 ppm overcame the effect of salt precipitation and resulted in higher evaporation (41%) rate. Addition of pigmented bacteria or bacterial extracted pigment to the brine respectively resulted in 18% and 24% increase in the evaporation rate.

Page generated in 0.0962 seconds