• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sustainable Water Usage and Surface Runoff Management in Lagos, Nigeria.

Kandissounon, Gilles-Arnaud 01 May 2018 (has links)
The exponential growth of the world population led by the geographic expansion of urban areas in developing countries has put massive pressure on natural resources especially land and water. Water supply and water scarcity remain one of the major challenges facing the industrializing world. The United Nations forecast further increase in population which, in the absence of management and policies, will inevitably put more resources at risk. Changing climatic conditions causing more frequent and intense rainfall will also affect water management systems in the vulnerable urban areas of developing countries. The goal of this study was twofold; first analyze the patterns of water consumption in the rapidly growing city of Lagos, Nigeria and use them in a System Dynamics (SD) model to make projections about future demand. The second part used remote sensing to quantify the contribution of extensive land use/cover change to urban flooding. Land use/cover dynamics over the past decade was analyzed using satellite imagery provided by Landsat Thematic Mapping (TM). Unsupervised classification was performed with false color composite using the Iterative Self-Organizing Data Analysis (ISODATA) technique in a Geographic Information Systems (GIS). The study area was divided into four different land use types during image classification: bare land, built-up area, water bodies, and vegetation. For water demand, two different scenarios of population growth including 5.5% and 2.75 % annual increase were considered. The results showed that water demand dropped by 67% of its current value when losses in distribution were reduced by 20% and population annual growth rate kept at 2.75% over the study period. Bare land and water bodies lost 1.31% and 1.61% of their current area respectively while built-up area grew by 1.11%. These changes in land use/cover changes led to a 64% increase in average surface runoff, mostly attributable to increasing surface imperviousness and the absence of an adequate urban drainage system. This paper intends to assist the authorities of the city of Lagos who adopted a master plan in 2010 as a road map to reduce to city’s vulnerability to flooding and close the gap between water demand and water supply by 2050.
2

Assessing the potential risk of failing to maintain water supply in the Rand Water area / Londani Phillip Lithole

Lithole, Londani Phillip January 2015 (has links)
The research study focused on assessing the potential risk of failing to maintain water supply in the Rand Water area. The study analysed all factors and areas that contributes to water supply in the Rand Water area; this included municipalities supplied by Rand Water, the Department of Water Affairs and other factors that directly affect Rand Water supply such as population growth, increased urbanisation and acid mine drainage. The objectives of the study were: (a) is to determine the potential risk of failing to maintain supply in the Rand Water supply area, in other words, the likeliness of water not being supplied adequately to customers. (b) generate timely and credible information to determine the understanding, awareness, and acknowledgement by the sampled management group of the existence of the potential water supply risk in the Rand Water supply area. This will be done through a quantitative study. The research study approach that was utilized was a quantitative methodology; this approach included the distribution of questionnaires to all relevant stakeholders in the Rand Water supply area. To address the problems that are highlighted in the problem statement and achieve the objectives of the study these answered questionnaires were then sent to a Statistical consultant at North-West University‟s Potchefstroom Campus, to be analysed using an SPSS Version 21 statistical program. The questionnaires were divided into the three big municipal customers, these municipalities combined takes a total of 74.35% of Rand Water supply; these are Johannesburg Water which is part of the City of Johannesburg Metropolitan Municipality, Ekurhuleni Metropolitan Municipality, Tshwane Metropolitan Municipality and other small municipalities and the Department of Water Affairs‟ officials. Many previous studies also were assessed to be able to help this study establish the seriousness of the water challenge, the amount of work that has already been done, factors contributing to the problem and finally, measures that can be put in place to address the problem. The results that were obtained for this study provided many relationships between this study‟s selected variables and also highlighted the need to put certain strategies in place to be able to control the growing demand for water in the Rand Water system. The name of the Department of Water Affairs has changed many times over the year. It used to be called DWAF (Department of Water Affairs and Forestry, then DWEA (Department of Water and Environmental Affairs, then DWA (Department of Water Affairs) and it has recently been changed to DWS (Department of Water and Sanitation. For the purposes of this study this department will be called DWA (The Department of Water Affairs) The results were very relevant as most of the relationships were found between variables that are practically supposed to be related in order for the problem to be dealt with fruitfully. From these results it could be concluded that the risk of failing to maintain water supply in the Rand Water supply area does exist, if certain factors were allowed to trend the way they‟ve been trending without measures in place to counteract them. It could also be concluded that certain measures have been initiated to deal with the problem; this included water demand management. Results indicated that collective efforts from all stakeholders in the Rand Water supply area will be crucial in addressing the water supply challenge and avoid future failure to supply. To close the gap between previous research studies and this research study recommendations were made. Areas of future research were also highlighted; these are areas that can add value in providing valued information to help the challenge of water shortage in the Rand Water supply area. This area of future research studies will also be crucial in identifying other external factors that were not highlighted in the study but contribute to the problem. This area of future research studies will also help when implementing turnaround strategies to avoid the risk of failing to maintain supply in the Rand Water area as it will be able to highlight a different strategy that deals with the problem holistically. / MBA, North-West University, Potchefstroom Campus, 2015
3

Assessing the potential risk of failing to maintain water supply in the Rand Water area / Londani Phillip Lithole

Lithole, Londani Phillip January 2015 (has links)
The research study focused on assessing the potential risk of failing to maintain water supply in the Rand Water area. The study analysed all factors and areas that contributes to water supply in the Rand Water area; this included municipalities supplied by Rand Water, the Department of Water Affairs and other factors that directly affect Rand Water supply such as population growth, increased urbanisation and acid mine drainage. The objectives of the study were: (a) is to determine the potential risk of failing to maintain supply in the Rand Water supply area, in other words, the likeliness of water not being supplied adequately to customers. (b) generate timely and credible information to determine the understanding, awareness, and acknowledgement by the sampled management group of the existence of the potential water supply risk in the Rand Water supply area. This will be done through a quantitative study. The research study approach that was utilized was a quantitative methodology; this approach included the distribution of questionnaires to all relevant stakeholders in the Rand Water supply area. To address the problems that are highlighted in the problem statement and achieve the objectives of the study these answered questionnaires were then sent to a Statistical consultant at North-West University‟s Potchefstroom Campus, to be analysed using an SPSS Version 21 statistical program. The questionnaires were divided into the three big municipal customers, these municipalities combined takes a total of 74.35% of Rand Water supply; these are Johannesburg Water which is part of the City of Johannesburg Metropolitan Municipality, Ekurhuleni Metropolitan Municipality, Tshwane Metropolitan Municipality and other small municipalities and the Department of Water Affairs‟ officials. Many previous studies also were assessed to be able to help this study establish the seriousness of the water challenge, the amount of work that has already been done, factors contributing to the problem and finally, measures that can be put in place to address the problem. The results that were obtained for this study provided many relationships between this study‟s selected variables and also highlighted the need to put certain strategies in place to be able to control the growing demand for water in the Rand Water system. The name of the Department of Water Affairs has changed many times over the year. It used to be called DWAF (Department of Water Affairs and Forestry, then DWEA (Department of Water and Environmental Affairs, then DWA (Department of Water Affairs) and it has recently been changed to DWS (Department of Water and Sanitation. For the purposes of this study this department will be called DWA (The Department of Water Affairs) The results were very relevant as most of the relationships were found between variables that are practically supposed to be related in order for the problem to be dealt with fruitfully. From these results it could be concluded that the risk of failing to maintain water supply in the Rand Water supply area does exist, if certain factors were allowed to trend the way they‟ve been trending without measures in place to counteract them. It could also be concluded that certain measures have been initiated to deal with the problem; this included water demand management. Results indicated that collective efforts from all stakeholders in the Rand Water supply area will be crucial in addressing the water supply challenge and avoid future failure to supply. To close the gap between previous research studies and this research study recommendations were made. Areas of future research were also highlighted; these are areas that can add value in providing valued information to help the challenge of water shortage in the Rand Water supply area. This area of future research studies will also be crucial in identifying other external factors that were not highlighted in the study but contribute to the problem. This area of future research studies will also help when implementing turnaround strategies to avoid the risk of failing to maintain supply in the Rand Water area as it will be able to highlight a different strategy that deals with the problem holistically. / MBA, North-West University, Potchefstroom Campus, 2015
4

Measurement and modelling of households' demand and access to basic water in relation to the rapidly increasing household numbers in South Africa.

Chidozie, Nnadozie Remigius. January 2010 (has links)
Service delivery in post-apartheid South Africa has become a topical issue both in the academia and the political arena . The rise of social movements, the xenophobic tensions of May 2008 and protest actions could be noted as the major traits of post-apartheid South Africa. Though there are divergent views on the underlying causes of these protests, lack of service delivery has most significantly been at the centre stage. In this thesis we investigate the relationship between household/population changes and the demand for piped-water connection in South Africa. There is an ample, albeit at times of questionable accuracy, supply of statistics from official and other sources. These statistics are both the source of inspiration of particular societal measures to be investigated and a gauge of the accuracy of the mathematical/statistical modelling which is the central feature of this project. We construct mathematical/statistical models which take into account demographic constituents of the problem using differential equations for modelling household dynamics and we also investigate the interaction of demographic parameters and the demand for piped-water connection using multivariate statistical techniques. The results show that with a boost in delivery the rich provinces seem to be in better standing of meeting targets and that the increasing demand in household-based services could be most significantly attributed to the fragmentation of households against other demographic processes like natural increase in population and net migration. The results imply that in as much as service delivery policies and programmes should focus on formerly disadvantaged poor communities, adequate provisions for increasing service demands in urban centres should also be a priority in view of the increasing in-migration from rural areas as households fragment. Most of the findings/results are in tabular and graphical forms for easy understanding of the reader. / Thesis (Ph.D.)-University of KwaZulu-Natal, Westville, 2010.
5

USING CLIMATE MODELS TO PREDICT WATER SUPPLY AND DEMAND IN LAS VEGAS VALLEY: A SYSTEM DYNAMICS APPROACH

Parajuli, Ranjan 01 August 2018 (has links)
This study investigated the impact of changing climate and growing population on water supply and demand in one of the most rapidly growing cities in the semi-arid regions of western US, Las Vegas Valley (LVV), Nevada. Future scenarios of supply and demand using climate and hydrological models of Coupled Model Intercomparison Project phase 3 (CMIP3) and a more recent CMIP5 have been evaluated and a comparison of their results has been made. A system dynamics model for LVV was developed with a period of study from 1989 to 2049. For the study area, climate and hydrological data projections for the future period (2013-2049) were obtained from the outputs of 16 Global Climate Models (GCMs) of CMIP3 model ensemble with 3 emission scenarios and that from 37 GCMs of CMIP5 model ensemble with 4 Representative concentration pathways. Population growth forecast by Center for Business and Economic Research (CBER) and prevalent conservation practices by Southern Nevada Water Authority (SNWA) were used for the model. The water availability scenario in the future for LVV in the form of Lake Mead elevation was assessed and the water demand was also predicted. This study found that mean lake elevation for the future period (2013-2049) can go as low as 21.8% lesser than that for the historical period (1989-2012). 59 of 97 projections of CMIP5 models against 27 of 48 projections of CMIP3 models indicated that the future mean lake elevation would be lower than the historical mean. Demand forecasts showed Southern Nevada Water Authority conservation goal for 2035 could be met under prevalent conservation practices. This study can be very useful for the water managers and planners to predict the future water budget, plan accordingly, and make decisions to achieve water sustainability. This study has been performed as a part of the Thriving Earth Exchange (TEX) program to assess the current vulnerability of LVV to drought, and the impact on supply and demand of water resources for the future climate scenarios.

Page generated in 0.1778 seconds