• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Project ABSS : Adhesive bonding of stainless steels

Andersson, Viktor, Larsson, Andreas January 2017 (has links)
This report aims to increase the scientific knowledge about long-term prospects for the adhesive and adhesive joints for bonding of stainless steels. The effects of water, temperature and chemicals on the adhesive and adhesive joints are investigated. Stainless steel plates are pretreated with a primer and isopropanol, there after joined together with single lap modeling. The strength of the joint is tested with a tensile test and additionally a watertightness test is performed to determine if the joints are watertight. For this project three versions of stainless steels is used and two different technologies of two- part adhesives, silicone and silane-modified polymer and one technology of tape, a double coated acrylic foam tape are tested. The result shows that all the adhesives fails cohesively and that tape fails partly adhesively. Result shows that all tests are affected by water, temperature and chemicals on different levels but tape is affected the most with a minimum of 40% loss in shear strength. Watertightness test shows that aged tape joints are not watertight. The polymer shows no signs of decreasing in shear strength and is watertight, but does become more viscous by aging. The report shows that a possible combination of adhesive and pretreatment that can withstand the effects of water, temperature and chemicals is found. The polymer presents a possibility to bond stainless steel with a simple pretreatment. Tape didn’t pass the test in a suitable way but presents opportunities if a sufficient pretreatment can be found.
2

Water transport due to wick action through concrete

Aldred, James M. January 2008 (has links)
Wick action is the transport of water through a concrete element from a face in contact with water to a drying face as occurs in basements, tunnels, slabs on grade and hollow offshore structures. Water transport through concrete due to wick action is many times greater due to pressure permeability under typical environmental conditions. Therefore wick action plays an important role in the watertightness and durability of concrete structures. Current models of wick action are based on an equilibrium developing between the rate of water entering concrete by sorptivity and leaving by water vapour diffusion where initial moisture content should not change the steady state rate, only the dominant factor in the early stages. / Wick action tests were conducted on concrete specimens of varying initial moisture condition, thickness, orientation and composition over periods ranging up to 450 days. Some wick action tests were conducted at 50% and 75% relative humidity and using a penetrating solution of reduced surface tension. The rate of wick action was found to be inversely proportional to thickness regardless of the initial moisture content of the specimen. Initial saturation was found to significantly increase wick action and moisture flow in ordinary Portland cement (OPC) and hydrophobic (HI) concretes drying at 75% RH and HI concrete drying at 50% RH. The data are consistent with the well documented hysteresis between sorption/desorption isotherms. Concretes containing silica fume (SF) and ground granulated blast-furnace slag (GGBS) did not exhibit such hysteresis. Reducing the surface tension of the pentrating solution profoundly reduced the sorptivity into dried specimens but not the depth of penetration or the steady state wick action rate. Direct measurements on osmotic flow through vacuum saturated specimens showed that osmotic effects had a limited effect on wick action at salt concentrations expected in most environmental conditions. / The research demonstrates that desorptivity from the drying surface rather than sorptivity into the wetting surface is the dominant factor determining wick action through concrete. The ease with which desorptivity can be measured and the simple empirical model developed provides practicising engineers with a useful tool to estimate water transport due to wick action through concrete in partially immersed conditions.
3

Investigation of Bond Strength and Watertightness of Asphalt Concrete Wearing Surfaces for Timber Bridge Decks

Haramis, John Emmanuel II 07 August 1997 (has links)
Two different asphalt concrete systems were examined in this research study. The existing system, consistent with current timber bridge construction practice, uses a preformed waterproofing membrane placed on a preservative treated wood deck overlaid with a bituminous concrete wearing surface. The second system consists of a treated wood deck overlaid with a base course of bituminous concrete, a waterproofing membrane, and a bituminous concrete wearing surface. The testing regime used in this research to evaluate watertightness and bond performance incorporated three parameters: three waterproofing membranes, two wood preservative treatments, and two environmental degradation conditions induced by temperature cycling in a moisture saturated condition. Control groups were evaluated for each study parameter and duplicate specimens were prepared and tested for each of the study parameters. A total of 160 specimens were constructed and tested. Watertightness of each system was determined by measuring the electrical impedance across a test specimen perpendicular to the direction of bond orientation in the pavement. The bond strength between each material of the paving systems was assessed using a shear test apparatus designed and built for this study. In addition to the laboratory constructed specimens, three drilled cores were taken from a bridge located on Creekside Drive in East Pennsboro Township, Pennsylvania. The deck was constructed using the new design proposed in this research and each core was tested for watertightness and bond strength. Results of watertightness testing indicated that low temperature environments appear to be most detrimental to system integrity in both the existing and proposed paving system configurations examined in this research. In general, each membrane appeared to perform equally well in the proposed paving system configuration as well as with all of the wood preservative treatments used in the existing pavement system. Bond strength between asphalt and wood with no membrane was observed to be nonexistent whether or not any preservative treatment was present. The placement of a membrane between these two layers did, however, result in a significant increase in bond strength because each membrane tested was able to adhere to the wood base better than the asphalt overlay. This gain is strength was significantly offset when petroleum solvent based preservative treatments were present in the wood substrate. Protectowrap M400 membrane performed slightly better than the other membranes when used with untreated wood, but all of the membranes performed equally when preservative treatments were present. The highest interlayer bond strengths (asphalt/asphalt or asphalt/wood) observed in this research occurred when asphalt concrete surface material was placed directly on top of asphalt concrete base material, however the addition of a membrane between the asphalt lifts consistently reduced this strength. The results of bond testing indicate that the proposed system will perform better in terms of shoving in the pavement overlay. Based on bond test results of cores taken from the Creekside Drive bridge, it appears that a shear strength greater than 25 psi after 200 low temperature exposure cycles will provide acceptable paving system performance in a low temperature (0-40ºF) environment. / Master of Science
4

Assessing Moisture Resilience of Wall Assemblies to Wind-Driven Rain Loads Arising from Climate Change

Xiao, Zhe 18 February 2022 (has links)
Moisture loads arising from the deposition of wind-driven rain (WDR) on building façades can induce detrimental effects to wall assembly components and can adversely influence their long-term performance. Wind-driven rain as a climatic phenomenon will inevitably be affected by the evident changing climate in the near future. Wall assemblies subjected to wind-driven rain loads will also perform differently due to a varying moisture environment over the course of time. The performance of the building envelope, including the wall assembly, largely determines the serviceability of a building over its life cycle. Thus, it is essential for practitioners to understand and to be able to assess such performance. In this study, a complete procedure has been developed to permit assessing the moisture resilience of wall assemblies to wind-driven rain loads arising from climate change. The development of this procedure included four phases. In the first phase the historical and projected climate data was analysed to identify the possible wind-driven rain conditions to which a wall assembly may be exposed. The magnitudes of wind-driven rain and driving-rain-wind-pressure for different return periods were also investigated. Based on the results from phase one, a watertightness test protocol was established taking into consideration the possible ranges of wind-driven rain and driving-rain-wind-pressure as they may occur spatially, as well as temporally, across Canada. The range of watertightness test parameters was accommodated in the newly built Dynamic Wind and Wall Testing Facility (DWTF) at the National Research Council Canada. Thereafter in phase two of the research, wall assemblies having different configurations were tested in the DWTF following the test protocol to obtain the moisture load for wall assemblies under different wind-driven rain conditions. Such moisture loads were formulized and used in the third phase, where hygrothermal simulations were conducted to derive the hygrothermal parameters of the wall assemblies subjected to historical and projected climate data. In the final research development phase, different criteria and methods were explored to describe the performance of wall assemblies based on the hygrothermal parameters. During the development of the moisture resilience assessment procedure, a novel wind-driven-rain-pressure-index was devised to describe the extent of the effects arising from the concurrent action of wind-driven rain and driving-rain-wind-pressure loads on a vertical wall assembly; a new two-step approach was established to formulize the watertightness test results and thereby permit calculating the moisture load using values of hourly wind-driven-rain and hourly driving-rain-wind-pressure of a given location; a novel severity index was proposed to quantitatively describe the damage events arising from such moisture load on the wall assemblies. The moisture performance of tested wall assemblies subjected to historical and projected future climate were compared and discussed. The risks of occurrence of damage events in wall assemblies during different time periods were also demonstrated.
5

Les méthodes géophysiques pour la caractérisation des couvertures d’installation de stockage de déchets / Geophysical methods for landfill cover characterisation

Genelle, Fanny 25 May 2012 (has links)
Parmi l’ensemble des matériaux constitutifs d’une couverture d’installation de stockage de déchets, l’argile et le GéoSynthétique Bentonitique (GSB), couramment utilisés, peuvent présenter des défauts qu’il est nécessaire de caractériser afin de prévoir les éventuels travaux de remise en état partielle ou totale du site. L’objectif de cette thèse est de déterminer la capacité des méthodes géophysiques de Tomographie de Résistivité Electrique (TRE), de Polarisation Spontanée (PS) et d’Automatic Resistivity Profiling (ARP) à caractériser les couvertures. Pour cela, un site expérimental constitué de deux couvertures, au sein desquelles des défauts ont été volontairement créés, a été mis en place. Le suivi temporel effectué sur la couverture sans GSB a montré que les conditions météorologiques du mois précédant les mesures ont une incidence sur la détection des défauts. De plus, les variations de comportement hydrique et électrique détectées en TRE au sein du matériau de couverture ont notamment pu être attribuées à l’existence d’hétérogénéités de composition. La présence de GSB rend plus difficile la détection des défauts quelle que soit la méthode utilisée. Cependant, il semble que le temps passant l’évolution du GSB permette une détection plus aisée. Enfin, les prospections effectuées sur une installation de stockage de déchets dangereux ont mis en évidence la nécessité de coupler plusieurs méthodes géophysiques. L’hétérogénéité des matériaux de couverture et de l’état du GSB, mise en évidence par la TRE, a été confirmée par des observations in situ sur des sondages à la tarière manuelle. / Among the whole landfill cover materials, clay and Geosynthetic Clay Liner (GCL), commonly used, may contain defects which are necessary to characterize in order to plan possible repair work, partial or total. The aim of this thesis is to define the ability of the following geophysical methods, the Electrical Resistivity Tomography (ERT), the Self Potential (SP) and the Automatic Resistivity Profiling (ARP) to characterize covers. To do this, an experimental site composed of two covers in which defects have been intentionally made has been built. These covers are composed of a clayey material upon which a GCL has been placed for one of these covers. The monitoring performed on the cover without the GCL has outlined that the climatic conditions of the month preceding measurements have an impact on the defects’ detection. Moreover, hydric and electrical behavior variations detected by ERT in the clayey material have in particular be linked with the presence of composition heterogeneities. The presence of the GCL makes more difficult the detection of defects whatever the method used. However, it seems that, over time, the evolution of the GCL enables an easier detection. Finally, surveys carried out on an industrial waste landfill have shown the necessity of coupling geophysical methods. The heterogeneity of the cover materials and the GCL has been checked by manual auger holes.
6

Studium efektu vybraných typů příměsí na vlastnosti cementových kompozitů / Study of the effect of selected types of aditives on the properties of cement composites

Kavka, Lukáš January 2021 (has links)
The diploma thesis describes admixtures for concrete. It deals with the influence of admixtures on the properties of cement composites in the fresh and hardened state. The theoretical part described the individual components of concrete, where the main attention was focused to inert admixtures and their effect on mechanical properties, shrinkage, resistance of cement composites to aggressive medium. Furthermore, the effect of admixtures on concretes with recycled aggregates was described. In the first stage of the practical part, cement mortars with 25, 35 and 50% replacement of cement admixtures were created. In the second stage, concretes with admixtures and a minimum strength class of C30/37 and C50/60 were created. Finely ground granulated slag, micronized limestone and granite stone dust were used as admixtures in mortars and concretes. The change of properties in the fresh and hardened state was observed on cement composites.

Page generated in 0.048 seconds