1 |
Dissipation at the Earth's Quasi-Parallel Bow ShockBehlke, Rico January 2005 (has links)
<p>The Earth's bow shock is a boundary where the solar wind becomes decelerated from supersonic to subsonic speed before being deflected around the Earth. This thesis presents measurements by the Cluster spacecraft upstream and at the Earth's quasi-parallel bow shock where the angle between the upstream magnetic field and the bow shock normal is less than 45 degrees. An intrinsic feature of quasi-parallel shocks is the ability of ions, that are reflected off the shock in a specular manner, to propagate far upstream and to interact with the incident solar wind. This leads to the generation of a variety of plasma waves, e.g., Ultra-Low Frequency (ULF) waves, which in their turn interact with the different ion populations. Some of the ULF waves are thought to steepen into so-called Short Large-Amplitude Magnetic Structures (SLAMS). </p><p>This thesis studies the impact of SLAMS on the incident solar wind. SLAMS are thought to play an important role in terms of 1) returning shock-reflected ions back to the shock where they can eventually contribute to downstream thermalisation and 2) local pre-dissipation of the solar wind. </p><p>The first electric field measurements of SLAMS showed a strong electric field rotation over SLAMS in association with the rotation of the magnetic field. This often leads to a local change from quasi-parallel to quasi-perpendicular conditions. In addition, short-scale electric field features were observed, e.g., spiky electric field structures associated with the leading edge of SLAMS and solitary electric field structures on Debye length scales, which are suggested to represent ion phase space holes. </p><p>Using the abilitiy of the four Cluster satellites to obtain propagation vectors of SLAMS and the high-resolution electric field measurements, the electric potential over SLAMS was studied. These structures are associated with a significant potential on the order of a few hundred to thousand Volt. Comparing these findings with data from the ion spectrometer, it was found that the bulk flow is locally significantly decelerated and moderately deflected and heated. In addition, SLAMS reflect incident ions on both the leading and trailing edge. The flux of so-called gyrating ions show a clear maximum in association with SLAMS. This indicates that SLAMS indeed play an important role for pre-dissipation of the solar wind upstream of the shock.</p>
|
2 |
Dissipation at the Earth's Quasi-Parallel Bow ShockBehlke, Rico January 2005 (has links)
The Earth's bow shock is a boundary where the solar wind becomes decelerated from supersonic to subsonic speed before being deflected around the Earth. This thesis presents measurements by the Cluster spacecraft upstream and at the Earth's quasi-parallel bow shock where the angle between the upstream magnetic field and the bow shock normal is less than 45 degrees. An intrinsic feature of quasi-parallel shocks is the ability of ions, that are reflected off the shock in a specular manner, to propagate far upstream and to interact with the incident solar wind. This leads to the generation of a variety of plasma waves, e.g., Ultra-Low Frequency (ULF) waves, which in their turn interact with the different ion populations. Some of the ULF waves are thought to steepen into so-called Short Large-Amplitude Magnetic Structures (SLAMS). This thesis studies the impact of SLAMS on the incident solar wind. SLAMS are thought to play an important role in terms of 1) returning shock-reflected ions back to the shock where they can eventually contribute to downstream thermalisation and 2) local pre-dissipation of the solar wind. The first electric field measurements of SLAMS showed a strong electric field rotation over SLAMS in association with the rotation of the magnetic field. This often leads to a local change from quasi-parallel to quasi-perpendicular conditions. In addition, short-scale electric field features were observed, e.g., spiky electric field structures associated with the leading edge of SLAMS and solitary electric field structures on Debye length scales, which are suggested to represent ion phase space holes. Using the abilitiy of the four Cluster satellites to obtain propagation vectors of SLAMS and the high-resolution electric field measurements, the electric potential over SLAMS was studied. These structures are associated with a significant potential on the order of a few hundred to thousand Volt. Comparing these findings with data from the ion spectrometer, it was found that the bulk flow is locally significantly decelerated and moderately deflected and heated. In addition, SLAMS reflect incident ions on both the leading and trailing edge. The flux of so-called gyrating ions show a clear maximum in association with SLAMS. This indicates that SLAMS indeed play an important role for pre-dissipation of the solar wind upstream of the shock.
|
3 |
Study on Nonlinear Acceleration of Electrons by Oblique Whistler Mode Waves / 斜め伝搬ホイッスラーモード波による非線形電子加速に関する研究Hsieh, Yikai 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21071号 / 工博第4435号 / 新制||工||1689(附属図書館) / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 大村 善治, 教授 松尾 哲司, 准教授 小嶋 浩嗣 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
|
4 |
The dynamics of Alfvén eigenmodes excited by energetic ions in toroidal plasmasTholerus, Emmi January 2016 (has links)
The future fusion power plants that are based on magnetic confinement will deal with plasmas that inevitably contain energetic (non-thermal) particles. These particles come, for instance, from fusion reactions or from external heating of the plasma. Ensembles of energetic ions can excite eigenmodes in the Alfvén frequency range to such an extent that the resulting wave fields redistribute the energetic ions, and potentially eject them from the plasma. The redistribution of ions may cause a substantial reduction of heating efficiency. Understanding the dynamics of such instabilities is necessary to optimise the operation of fusion experiments and of future fusion power plants. Two models have been developed to simulate the interaction between energetic ions and Alfvén eigenmodes. One is a bump-on-tail model, of which two versions have been developed: one fully nonlinear and one quasilinear. The quasilinear version has a lower dimensionality of particle phase space than the nonlinear one. Unlike previous similar studies, the bump-on-tail model contains a decorrelation of the wave-particle phase in order to model stochasticity of the system. When the characteristic time scale for macroscopic phase decorrelation is similar to or shorter than the time scale of nonlinear wave-particle dynamics, the nonlinear and the quasilinear descriptions quantitatively agree. A finite phase decorrelation changes the growth rate and the saturation amplitude of the wave mode in systems with an inverted energy distribution around the wave-particle resonance. Analytical expressions for the correction of the growth rate and the saturation amplitude have been derived, which agree well with numerical simulations. A relatively weak phase decorrelation also diminishes frequency chirping events of the eigenmode. The second model is called FOXTAIL, and it has a wider regime of validity than the bump-on-tail model. FOXTAIL is able to simulate systems with multiple eigenmodes, and it includes effects of different individual particle orbits relative to the wave fields. Simulations with FOXTAIL and the nonlinear bump-on-tail model have been compared in order to determine the regimes of validity of the bump-on-tail model quantitatively. Studies of two-mode scenarios confirmed the expected consequences of a fulfillment of the Chirikov criterion for resonance overlap. The influence of ICRH on the eigenmode-energetic ion system has also been studied, showing qualitatively similar effects as seen by the presence of phase decorrelation. Another model, describing the efficiency of fast wave current drive, has been developed in order to study the influence of passive components close to the antenna, in which currents can be induced by the antenna generated wave field. It was found that the directivity of the launched wave, averaged over model parameters, was lowered by the presence of passive components in general, except for low values of the single pass damping of the wave, where the directivity was slightly increased, but reversed in the toroidal direction. / De framtida fusionskraftverken baserade på magnetisk inneslutning kommer att hantera plasmor som oundvikligen innehåller energetiska (icke-termiska) partiklar. Dessa partiklar kommer exempelvis från fusionsreaktioner eller från externa uppvärmningsmekanismer av plasmat. Ensembler av energetiska joner kan excitera egenmoder i Alfvén-frekvensområdet i en sådan utsträckning att de resulterande vågfälten omfördelar de energetiska jonerna i rummet, och potentiellt slungar ut jonerna ur plasmat. Omfördelningen av joner kan orsaka en väsentligen minskad uppvärmningseffekt. Det är nödvändigt att förstå dynamiken hos denna typ av instabilitet för att kunna optimera verkningsgraden hos experiment och hos framtida fusionskraftverk. Två modeller har utvecklats för att simulera interaktionen mellan energetiska joner och Alfvén-egenmoder. Den första är en bump-on-tail-modell, av vilken två versioner har utvecklats: en fullt icke-linjär och en kvasi-linjär. I den kvasi-linjära versionen har partiklarnas fasrum en lägre dimensionalitet än i den icke-linjära versionen. Till skillnad från tidigare liknande studier innehåller denna bump-on-tail-modell en dekorrelation av våg-partikelfasen för att modellera stokasticitet hos systemet. När den karakteristiska tidsskalan för makroskopisk fasdekorrelation är ungefär samma som eller kortare än tidsskalan för icke-linjär våg-partikeldynamik så stämmer den icke-linjära och den kvasi-linjära beskrivningen överens kvantitativt. En ändlig fasdekorrelation förändrar vågmodens tillväxthastighet och satureringsamplitud i system med en inverterad energifördelning omkring våg-partikelresonansen. Analytiska uttryck för korrektionen av tillväxthastigheten och satureringsamplituden har härletts, vilka stämmer väl överens med numeriska simuleringar. En relativt svag fasdekorrelation försvagar även "frequency chirping events" (snabba frekvensskiftningar i korttids-Fourier-transformen av egenmodens amplitudutveckling) hos egenmoden. Den andra modellen, kallad FOXTAIL, har ett mycket bredare giltighetsområde än bump-on-tail-modellen. FOXTAIL kan simulera system med flera egenmoder, och den inkluderar effekter av olika enskilda partikelbanor relativt vågfälten. Simuleringar med FOXTAIL och med bump-on-tail-modellen har jämförts för att kvantitativt bestämma bump-on-tail-modellens giltighetsområde. Studier av scenarier med två egenmoder bekräftar de förväntade effekterna av när Chirikov-kriteriet för resonansöverlapp uppfylls. Även inflytandet av ICRH på dynamiken mellan egenmoder och energetiska joner har studerats, vilket har visat kvalitativt liknande effekter som har observerats i närvaron av fasdekorrelation. En annan modell, vilken beskriver effektiviteten hos "fast wave current drive" (strömdrivning med snabba magnetosoniska vågor), har utvecklats för att studera inflytandet av passiva komponenter nära antennen, i vilka strömmar kan induceras av vågfälten som genereras av antennen. Det visades att den utskickade vågens direktivitet, medelvärdesbildat över modellparametrar, generellt sett minskade vid närvaron av passiva komponenter, förutom vid låg "sinlge pass damping" (dämpning av vågen vid propagering genom hela plasmat), då direktiviteten istället ökade något, men bytte tecken i toroidal riktning. / <p>QC 20160927</p>
|
5 |
Structure et dynamique de l'interface entre des tubes de flux entrelacés observés à la magnétopause terrestre par la mission MMS / Structure and dynamics of the interface between interlacing flux tubes observed at the Earth's magnetopause by MMS missionKacem, Issaad 11 October 2018 (has links)
La reconnexion magnétique est un processus omniprésent et fondamental dans la physique des plasmas spatiaux. La "Magnetospheric multiscale mission" (MMS) de la NASA, lancée le 12 mars 2015, a été conçue pour fournir des mesures in-situ permettant d'analyser le processus de reconnexion dans la magnétosphère terrestre. Dans ce but, quatre satellites identiquement instrumentés mesurent les champs électromagnétiques et les particules chargées dans les régions de reconnexion, avec une résolution temporelle cent fois meilleure que celle des missions précédentes. MMS permet, pour la première fois, d'étudier les structures microscopiques associées à la reconnexion magnétique et, en particulier, la région de diffusion électronique. Au niveau de la magnétopause terrestre, la reconnexion magnétique a un rôle chef dans le transport de l'énergie du vent solaire vers la magnétosphère terrestre, en convertissant l'énergie magnétique en énergie cinétique et thermique. Les événements à transfert de flux (FTEs) sont considérés comme l'un des produits principaux et les plus typiques de la reconnexion magnétique à la magnétopause terrestre. Cependant, des structures magnétiques 3D plus complexes, avec des signatures similaires à celles des FTEs, peuvent également exister à la magnétopause. On retrouve, par exemple, des tubes de flux entrelacés qui résultent de reconnexions magnétiques ayant eues lieu à des sites différents. La première partie de cette thèse étudie l'un de ces événements, qui a été observé dans des conditions de vent solaire inhabituelles, au voisinage de la magnétopause terrestre par MMS. Malgré des signatures qui, à première vue, semblaient cohérentes avec un FTE classique, cet événement a été interprété comme étant le résultat de l'interaction de deux tubes de flux avec des connectivités magnétiques différentes. La haute résolution temporelle des données MMS a permis d'étudier en détail une fine couche de courant observée à l'interface entre les deux tubes de flux. La couche de courant était associée à un jet d'ions, suggérant ainsi que la couche de courant était soumise à une compression qui a entraîné une reconnexion magnétique à l'origine du jet d'ions. La direction, la vitesse de propagation et la taille de différentes structures ont été déduites en utilisant des techniques d'analyse de données de plusieurs satellites. La deuxième partie de la thèse fournit une étude complémentaire à la précédente et s'intéresse aux ondes observées autour de la couche de courant. / Magnetic reconnection is a ubiquitous and fundamental process in space plasma physics. The NASA's Magnetospheric Multiscale mission (MMS) launched on 12 March 2015 was designed to provide in-situ measurements for analyzing the reconnection process at the Earth's magnetosphere. In this aim, four identically instrumented spacecraft measure fields and particles in the reconnection regions with a time resolution which is one hundred times faster than previous missions. MMS allows for the first time to study the microscopic structures associated with magnetic reconnection and, in particular, the thin electron diffusion region. At the Earth's magnetopause, magnetic reconnection governs the transport of energy and momentum from the solar wind plasma into the Earth's magnetosphere through conversion of magnetic energy into kinetic and thermal energies after a rearrangement of magnetic field lines. Flux Transfer Events (FTEs) are considered to be one of the main and most typical products of magnetic reconnection at the Earth's magnetopause. However, more complex 3D magnetic structures with signatures akin to those of FTEs might also occur at the magnetopause like interlaced flux tubes resulting from magnetic reconnection at multiple sites. The first part of the work presented in this thesis consisted of the investigation of one of these events that was observed, under unusual and extreme solar wind conditions, in the vicinity of the Earth's magnetopause by MMS. Despite signatures that, at first glance, appeared consistent with a classic FTE, this event was interpreted to be the result of the interaction of two separate sets of magnetic field lines with different connectivities. The high time resolution of MMS data allowed to resolve a thin current sheet that was observed at the interface between the two sets of field lines. The current sheet was associated with a large ion jet suggesting that the current sheet was submitted to a compression which drove magnetic reconnection and led to the formation of the ion jet. The direction, velocity and scale of different structures were inferred using multi-spacecraft data analysis techniques. This study was completed with a plasma wave analysis that focused on the reconnecting current sheet.
|
6 |
Étude spectroscopique des phénomènes de résonance dans les plasmas micro-ondesBoivin, Simon 06 1900 (has links)
No description available.
|
7 |
The dynamics of Alfvén eigenmodes excited by energetic ions in toroidal plasmasTholerus, Emmi January 2015 (has links)
Experiments for the development of fusion power that are based on magnetic confinement deal with plasmas that inevitably contain energetic (non-thermal) particles. These particles come e.g. from fusion reactions or from external heating of the plasma. Ensembles of energetic ions can excite plasma waves in the Alfvén frequency range to such an extent that the resulting wave fields redistribute the energetic ions, and potentially eject them from the plasma. The redistribution of ions may cause a substantial reduction heating efficiency, and it may damage the inner walls and other components of the vessel. Understanding the dynamics of such instabilities is necessary to optimise the operation of fusion experiments and of future fusion power plants. A Monte Carlo model that describes the nonlinear wave-particle dynamics in a toroidal plasma has been developed to study the excitation of the abovementioned instabilities. A decorrelation of the wave-particle phase is added in order to model stochasticity of the system (e.g. due to collisions between particles). Based on the nonlinear description with added phase decorrelation, a quasilinear version of the model has been developed, where the phase decorrelation has been replaced by a quasilinear diffusion coefficient in particle energy. When the characteristic time scale for macroscopic phase decorrelation becomes similar to or shorter than the time scales of nonlinear wave-particle dynamics, the two descriptions quantitatively agree on a macroscopic level. The quasilinear model is typically less computationally demanding than the nonlinear model, since it has a lower dimensionality of phase space. In the presented studies, several effects on the macroscopic wave-particle dynamics by the presence of phase decorrelation have been theoretically and numerically analysed, e.g. effects on the growth and saturation of the wave amplitude, and on the so called frequency chirping events with associated hole-clump pair formation in particle phase space. Several effects coming from structures of the energy distribution of particles around the wave-particle resonance has also been studied. / <p>QC 20150330</p>
|
Page generated in 0.1096 seconds