• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Phénomènes de propagation de champignons parasites de plantes par couplage de diffusion spatiale et de reproduction sexuée / Propagation phenomena of fungal plant parasites, by coupling of spatial diffusion and sexual reproduction

Doli, Valentin 22 December 2017 (has links)
On considère des organismes qui mixent reproduction sexuée et asexuée, dans une situation où la reproduction sexuée fait intervenir à la fois de la dispersion spatiale et de la limitation d'appariement. Nous proposons un modèle qui implique deux équations couplées, la première étant une équation différentielle ordinaire de type logistique, la seconde étant une équation de réaction-diffusion. Grâce à des valeurs réalistes des différents coefficients, il s'avère que la deuxième équation fait intervenir une échelle de temps rapide, alors que la première fait intervenir une échelle de temps lente. Dans un premier temps, on montre l'existence et l'unicité de solutions au système original. Dans un second temps, dans la limite où l'échelle de temps rapide est considérée infiniment rapide, on montre la convergence vers une dynamique réduite d'état d'équilibre, dont les termes correctifs peuvent être calculés à tout ordre. Troisièmement, en utilisant des propriétés de monotonie de notre système coopératif, on montre l'existence d'ondes progressives dans une région particulière de l'espace des paramètres (cas monostable). / We consider organisms that mix sexual and asexual reproduction, in a situation where sexual reproduction involves both spatial dispersion and mate finding limitation. We propose a model that involves two coupled equations, the first one being an ordinary differential equation of logistic type, the second one being a reaction diffusion equation. According to realistic values of the various coefficients, the second equation turns out to involve a fast time scale, while the first one involves a separated slow time scale. First we show existence and uniqueness of solutions to the original system. Second, in the limit where the fast time scale is considered infinitely fast, we show the convergence towards a reduced quasi steady state dynamics, whose correctors can be computed at any order. Third, using monotonicity properties of our cooperative system, we show the existence of traveling wave solutions in a particular region of the parameter space (monostable case).
12

Ultrasound shear wave imaging for diagnosis of nonalcoholic fatty liver disease

Yazdani, Ladan 04 1900 (has links)
Pour le diagnostic et la stratification de la fibrose hépatique, la rigidité du foie est un biomarqueur quantitatif estimé par des méthodes d'élastographie. L'élastographie par ondes de cisaillement (« shear wave », SW) utilise des ultrasons médicaux non invasifs pour évaluer les propriétés mécaniques du foie sur la base des propriétés de propagation des ondes de cisaillement. La vitesse des ondes de cisaillement (« shear wave speed », SWS) et l'atténuation des ondes de cisaillement (« shear wave attenuation », SWA) peuvent fournir une estimation de la viscoélasticité des tissus. Les tissus biologiques sont intrinsèquement viscoélastiques et un modèle mathématique complexe est généralement nécessaire pour calculer la viscoélasticité en imagerie SW. Le calcul précis de l'atténuation est essentiel, en particulier pour une estimation précise du module de perte et de la viscosité. Des études récentes ont tenté d'augmenter la précision de l'estimation du SWA, mais elles présentent encore certaines limites. Comme premier objectif de cette thèse, une méthode de décalage de fréquence revisitée a été développée pour améliorer les estimations fournies par la méthode originale de décalage en fréquence [Bernard et al 2017]. Dans la nouvelle méthode, l'hypothèse d'un paramètre de forme décrivant les caractéristiques spectrales des ondes de cisaillement, et assumé initialement constant pour tous les emplacements latéraux, a été abandonnée permettant un meilleur ajustement de la fonction gamma du spectre d'amplitude. En second lieu, un algorithme de consensus d'échantillons aléatoires adaptatifs (« adaptive random sample consensus », A-RANSAC) a été mis en œuvre pour estimer la pente du paramètre de taux variable de la distribution gamma afin d’améliorer la précision de la méthode. Pour valider ces changements algorithmiques, la méthode proposée a été comparée à trois méthodes récentes permettant d’estimer également l’atténuation des ondes de cisaillements (méthodes de décalage en fréquence, de décalage en fréquence en deux points et une méthode ayant comme acronyme anglophone AMUSE) à l'aide de données de simulations ou fantômes numériques. Également, des fantômes de gels homogènes in vitro et des données in vivo acquises sur le foie de canards ont été traités. Comme deuxième objectif, cette thèse porte également sur le diagnostic précoce de la stéatose hépatique non alcoolique (NAFLD) qui est nécessaire pour prévenir sa progression et réduire la mortalité globale. À cet effet, la méthode de décalage en fréquence revisitée a été testée sur des foies humains in vivo. La performance diagnostique de la nouvelle méthode a été étudiée sur des foies humains sains et atteints de la maladie du foie gras non alcoolique. Pour minimiser les sources de variabilité, une méthode d'analyse automatisée faisant la moyenne des mesures prises sous plusieurs angles a été mise au point. Les résultats de cette méthode ont été comparés à la fraction de graisse à densité de protons obtenue de l'imagerie par résonance magnétique (« magnetic resonance imaging proton density fat fraction », MRI-PDFF) et à la biopsie du foie. En outre, l’imagerie SWA a été utilisée pour classer la stéatose et des seuils de décision ont été établis pour la dichotomisation des différents grades de stéatose. Finalement, le dernier objectif de la thèse consiste en une étude de reproductibilité de six paramètres basés sur la technologie SW (vitesse, atténuation, dispersion, module de Young, viscosité et module de cisaillement). Cette étude a été réalisée chez des volontaires sains et des patients atteints de NAFLD à partir de données acquises lors de deux visites distinctes. En conclusion, une méthode robuste de calcul du SWA du foie a été développée et validée pour fournir une méthode de diagnostic de la NAFLD. / For diagnosis and staging of liver fibrosis, liver stiffness is a quantitative biomarker estimated by elastography methods. Ultrasound shear wave (SW) elastography utilizes noninvasive medical ultrasound to assess the mechanical properties of the liver based on the monitoring of the SW propagation. SW speed (SWS) and SW attenuation (SWA) can provide an estimation of tissue viscoelasticity. Biological tissues are inherently viscoelastic in nature and a complex mathematical model is usually required to compute viscoelasticity in SW imaging. Accurate computation of attenuation is critical, especially for accurate loss modulus and viscosity estimation. Recent studies have made attempts to increase the precision of SWA estimation, but they still face some limitations. As a first objective of this thesis, a revisited frequency-shift method was developed to improve the estimates provided by the original implementation of the frequency-shift method [Bernard et al 2017]. In the new method, the assumption of a constant shape parameter of the gamma function describing the SW magnitude spectrum has been dropped for all lateral locations, allowing a better gamma fitting. Secondly, an adaptive random sample consensus algorithm (A-RANSAC) was implemented to estimate the slope of the varying rate parameter of the gamma distribution to improve the accuracy of the method. For the validation of these algorithmic changes, the proposed method was compared with three recent methods proposed to estimate SWA (frequency-shift, two-point frequency-shift and AMUSE methods) using simulation data or numerical phantoms. In addition, in vitro homogenous gel phantoms and in vivo animal (duck) liver data were processed. As a second objective, this thesis also aimed at improving the early diagnosis of nonalcoholic fatty liver disease (NAFLD), which is necessary to prevent its progression and decrease the overall mortality. For this purpose, the revisited frequency-shift method was tested on in vivo human livers. The new method's diagnosis performance was investigated with healthy and NAFLD human livers. To minimize sources of variability, an automated analysis method averaging measurements from several angles has been developed. The results of this method were compared to the magnetic resonance imaging proton density fat fraction (MRI-PDFF) and to liver biopsy. SWA imaging was used for grading steatosis and cut-off decision thresholds were established for dichotomization of different steatosis grades. As a third objective, this thesis is proposing a reproducibility study of six SW-based parameters (speed, attenuation, dispersion, Young’s modulus, viscosity and shear modulus). The assessment was performed in healthy volunteers and NAFLD patients using data acquired at two separate visits. In conclusion, a robust method for computing the liver’s SWA was developed and validated to provide a diagnostic method for NAFLD.
13

Non-invasive diagnosis of liver cancer using quantitative ultrasound

Rafati Sahneh Saraei, Iman 08 1900 (has links)
L'objectif principal de cette thèse est de faire progresser le domaine de l'imagerie quantitative par ultrasons (QUS) et de la viscoélastographie par ondes de cisaillement (SWVE) pour l'évaluation du cancer du foie, en particulier pour différencier les lésions bénignes et malignes. Cet objectif est atteint grâce à trois études ciblées. La première étude améliore les capacités de diagnostic de QUS en développant des cartes de pente du coefficient d'atténuation local (LACS) régularisées sans fantôme (PF-R). Les méthodes traditionnelles nécessitant des fantômes de référence sont limitées par l'hypothèse de vitesses sonores comparables entre les fantômes et les tissus et par l'inconvénient d'acquérir des données à partir des deux. La méthodologie PF-R proposée élimine le besoin de fantômes d'étalonnage, normalise la fréquence et la profondeur sans sacrifier la précision et étend l'applicabilité aux tissus non homogènes. Les principales modifications comprennent l'interpolation linéaire du spectre de puissance, l'assouplissement des hypothèses de diffraction et la restriction adaptative de fréquence. Testée sur divers fantômes imitant les tissus et sur des ensembles de données hépatiques humaines, la méthode démontre sa robustesse et son potentiel pour améliorer la précision diagnostique de la stéatose hépatique et des tumeurs. La deuxième étude aborde les limites de l'échographie en mode B (US) dans la détection et la différenciation des nodules hépatiques en utilisant l'imagerie QUS LACS. L'échographie en mode B traditionnelle est souvent confrontée à une faible sensibilité en présence de foie gras ou de cirrhose. L'imagerie LACS, fournissant une caractérisation tissulaire supplémentaire sans agents de contraste, améliore la visibilité des nodules et les performances diagnostiques. L'étude a été menée sur 97 patients (âge : 62 ans ± 13) présentant 100 nodules hépatiques focaux (57% malins et 43% bénins). L'imagerie LACS a démontré un rapport contraste-bruit (CNR) supérieur à celui de l'US en mode B (12.3 dB, p<0.0001). Avec un seuil LACS de 0.94 dB/cm/MHz, la technique a atteint une sensibilité de 0.83 (IC – intervalle de confiance : 0.74-0.89) et une spécificité de 0.82 (IC : 0.73-0.88). Les valeurs moyennes du LACS étaient significativement plus élevées dans les nodules malins (1.28 ± 0.27 dB/cm/MHz) que dans les nodules bénins (0.98 ± 0.19 dB/cm/MHz, p<0.0001), permettant une classification plus précise avec une aire sous la courbe caractéristique (AUC) de 0.93 pour les nodules malins (IC : 0.88-0.97). La troisième étude examine l'application du SWVE au diagnostic du cancer du foie, en se concentrant sur la vitesse des ondes de cisaillement (SWS) et l'atténuation des ondes de cisaillement (SWA). Bien que le SWVE se soit révélé prometteur dans l'évaluation de la fibrose et de la stéatose hépatique, son utilisation dans la caractérisation des lésions hépatiques focales est sous-explorée. Cette étude évalue le SWS et le SWA chez 73 patients présentant 75 nodules hépatiques focaux, en utilisant l'IRM et l'histopathologie comme références. Les résultats indiquent que le SWS moyen était significativement plus élevé dans les nodules malins (2.35 ± 0.62 m/s) que dans les nodules bénins (1.89 ± 0.88 m/s, p<0.001), tandis que le SWA était significativement plus faible dans les nodules malins (0.59 ± 0.31 Np/m/Hz) que dans les nodules bénins (0.93 ± 0.49 Np/m/Hz, p<0.001). Un seuil de 2.43 m/s pour le SWS a fourni une sensibilité de 0.54 (IC : 0.38-0.69) et une spécificité de 0.84 (IC : 0.72-0.94), tandis qu'un seuil SWA de 0.81 Np/m/Hz a atteint une sensibilité de 0.83 (IC : 0.69-0.92) et une spécificité de 0.71 (IC : 0.55-0.83). La combinaison du SWS et du SWA par le biais d'une analyse discriminante linéaire (LDA) a permis d’améliorer la précision de la classification, avec une sensibilité de 0.84 (IC : 0.69-0.92) et une spécificité de 0.87 (IC : 0.73-0.94). La combinaison du SWS et du SWA par l’analyse LDA améliore la précision de la classification, soulignant le potentiel du SWVE pour affiner le diagnostic du cancer du foie et la planification du traitement. Dans l'ensemble, cette recherche fait progresser les techniques d'échographie non invasives, fournit de nouveaux biomarqueurs et améliore la précision du diagnostic du cancer du foie, favorisant ainsi une meilleure prise de décision clinique et de meilleurs résultats pour les patients. / The primary aim of this thesis is to advance the field of quantitative ultrasound (QUS) imaging and shear wave viscoelastography (SWVE) for liver cancer assessment, specifically in differentiating benign and malignant nodules. This objective is achieved through three focused studies. The first study enhances QUS diagnostic capabilities by developing phantom-free regularized (PF-R) local attenuation coefficient slope (LACS) maps. Traditional methods requiring reference phantoms are limited by the assumption of comparable sound speeds between phantoms and tissues and the inconvenience of acquiring data from both. The proposed PF-R methodology eliminates the need for calibration phantoms, normalizes frequency and depth without sacrificing accuracy, and extends applicability to nonhomogeneous tissues. Key modifications include linear interpolation of the power spectrum, relaxation of diffraction assumptions, and adaptive frequency restriction. Tested on various tissue-mimicking phantoms and human liver datasets, the method demonstrates robustness and potential for improved diagnostic accuracy in liver steatosis and tumors. The second study addresses the limitations of B-mode ultrasound (US) in detecting and differentiating liver nodules by employing QUS LACS imaging. Traditional B-mode US often struggles with low sensitivity in the presence of fatty liver or cirrhosis. LACS imaging, providing additional tissue characterization without contrast agents, improves nodule visibility and diagnostic performance. The study was conducted on 97 patients (age: 62 years ± 13) with 100 focal liver nodules (57% malignant and 43% benign). LACS imaging demonstrated superior contrast-to-noise ratio (CNR) compared to B-mode US (12.3 dB, p<0.0001). With a LACS threshold of 0.94 dB/cm/MHz, the technique achieved a sensitivity of 0.83 (CI – confidence interval: 0.74-0.89) and a specificity of 0.82 (CI: 0.73-0.88). LACS mean values were significantly higher in malignant nodules (1.28 ± 0.27 dB/cm/MHz) compared to benign nodules (0.98 ± 0.19 dB/cm/MHz, p<0.0001), providing a more accurate classification with an area under the receiver operating characteristic curve (AUC) of 0.93 for malignant nodules (CI: 0.88-0.97). The third study investigates the application of SWVE in liver cancer diagnosis, focusing on shear wave speed (SWS) and shear wave attenuation (SWA). While SWVE has shown promise in assessing liver fibrosis and steatosis, its use in characterizing focal liver nodules is underexplored. This study evaluates SWS and SWA in 73 patients with 75 focal liver nodules, using MRI and histopathology as references. Results indicate that mean SWS was significantly higher in malignant nodules (2.35 ± 0.62 m/s) than in benign nodules (1.89 ± 0.88 m/s, p<0.001), while SWA was significantly lower in malignant nodules (0.59 ± 0.31 Np/m/Hz) compared to benign nodules (0.93 ± 0.49 Np/m/Hz, p<0.001). A threshold of 2.43 m/s for SWS provided a sensitivity of 0.54 (CI: 0.38-0.69) and a specificity of 0.84 (CI: 0.72-0.94), whereas a SWA threshold of 0.81 Np/m/Hz achieved a sensitivity of 0.83 (CI: 0.69-0.92) and a specificity of 0.71 (CI: 0.55-0.83). Combining SWS and SWA through linear discriminant analysis (LDA) further improved classification accuracy, achieving a sensitivity of 0.84 (CI: 0.69-0.92) and a specificity of 0.87 (CI: 0.73-0.94). Combining SWS and SWA through the LDA improves classification accuracy, highlighting the potential of SWVE in refining liver cancer diagnosis and treatment planning. Overall, this research advances noninvasive ultrasound techniques, providing new biomarkers and enhancing the diagnostic accuracy for liver cancer, thereby supporting better clinical decision-making and patient outcomes.

Page generated in 0.0454 seconds