• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 93
  • 17
  • 14
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 182
  • 118
  • 48
  • 33
  • 28
  • 23
  • 21
  • 21
  • 21
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Impacts of sedimentation on the structure and functioning of agricultural stream communities

Burdon, Francis John January 2013 (has links)
The excessive deposition of fine inorganic sediment (<2 mm) is a major pathway by which agricultural land uses exert pressure on stream ecosystems. However, less well understood are the underlying mechanisms driving threshold biotic responses and the ecological consequences of community changes to sedimentation. Reviewing the literature, I found that sedimentation can affect algal and detrital pathways, and invertebrate community composition may show abrupt shifts with increased sediment. Moreover, functional changes to communities potentially leads to simpler food webs, with altered interactions and decreased ecosystem function. After identifying these knowledge gaps, I conducted survey and experimental research using agricultural streams on the Canterbury Plains of New Zealand’s South Island. Results from my survey of 30 streams along a sedimentation gradient showed that pollution-sensitive invertebrates (% EPT; Ephemeroptera, Plecoptera, Trichoptera) demonstrated threshold responses to sediment that varied with spatial scale, and change-point analysis indicated marked declines beyond 20% fine sediment covering streambed reaches. Structural equation modeling indicated that decreased habitat availability was a key mechanism contributing to these changes. To better understand the functional consequences of altered community structure, I investigated food webs in 12 streams along the gradient. The results showed a compression of community trophic niche space, suggesting that in particular, primary consumers became trophically more equivalent. The simplification of stream food webs with increasing sediment appeared to be the result of functional changes to invertebrate communities, with fewer specialised consumers, and shifts in the availability of basal resources. Using field and laboratory experiments investigating litter breakdown and invertebrate feeding, I found that the net consequence of functionally less diverse stream communities with increased sediment was impaired ecosystem function, demonstrated by a reduction in litter breakdown rates. The reduction of detrital resource availability through burial by sediment in laboratory mesocosm experiments strongly influenced detrital consumption rates, thus leading to reduced growth and survival of detritivorous caddisflies. The survey and experimental results support my postulate that sediment deposition causes environmental stress by degrading benthic habitat and making associated food resources (e.g., periphyton and leaves) less available. Overall, my results have provided new insights into sediment impacts on stream communities and have furthered our understanding of how these changes affect the structure and functioning of stream ecosystems.
72

Mercury biomagnification in subtropical reservoirs of eastern China

Razavi, N Roxanna 03 July 2014 (has links)
Mercury (Hg) is a global pollutant, yet Hg biomagnification, the increase in Hg with trophic level, remains poorly characterized in many regions, especially at subtropical latitudes. The present study assessed subtropical reservoirs of eastern China, which provided an opportunity to quantify Hg biomagnification under highly altered conditions that included high atmospheric Hg deposition, use of reservoirs for fisheries, manipulation of food webs through stocking and high fishing pressure, and increasing eutrophication. Despite China’s Hg emission and deposition rates that are among the highest worldwide, low fish Hg concentrations and Hg biomagnification rates were found; this was explained by food web structure and fish species characteristics. Stocked species occupied lower trophic levels and had significantly lower Hg concentrations relative to wild fishes. Evidence of decreased Hg concentrations with eutrophication (as indicated by chlorophyll-a) was observed, suggesting algal biodilution and/or somatic growth dilution. Relative to temperate lakes, zooplankton density dilution may also be causing reduced Hg concentrations in subtropical biota. Hydrogeomorphic features, such as water retention time and percent crop cover, explained Hg bioaccumulation factors and Hg concentrations at the base of the food web. Eutrophication and hydrogeomorphic features also influenced the bioavailability of selenium, which can protect against the toxicity of Hg at adequate concentrations, and the concentration of eicosapentaenoic acid, a beneficial fatty acid, in the planktivorous Bighead Carp (Hypophthalmichthys nobilis). This may indicate that the risk of exposure to the neurotoxicant methylmercury relative to benefits of fish consumption may increase with eutrophication in some fish species. Overall, the findings of this study suggest food web structure, eutrophication, and hydrogeomorphic features together explain low Hg concentrations in anthropogenically modified subtropical reservoirs in eastern China. / Thesis (Ph.D, Biology) -- Queen's University, 2014-07-01 11:35:12.637
73

Evaluation of Mitigative Techniques for Non-Contact Lap Splices in Concrete Block Construction

2014 April 1900 (has links)
A previously completed study in the field of concrete block construction by Ahmed and Feldman (2012) indicated that, on average, the reinforcing bars in non-contact lap splices, where the lapped bars are located in adjacent cells, only develop 71% of the tensile resistance of spliced bars which are in contact. An experimental program was therefore initiated to design and evaluate remedial measures which can potentially increase the tensile resistance of non-contact lap splices to that of contact lap splice of the same lap length. Implementation of the proposed measures in various field situations was also analyzed. Six unique remedial splice details, along with standard contact and unaltered non-contact lap splices were evaluated and compared. The mitigative details included providing additional confinement, installing knock-out webs, placing splice reinforcement between the lapped bars, and combinations of these aforementioned details. Three replicates of each splice detail were constructed for a total of 24 wall splice specimens. Each wall splice specimen was reinforced with No. 15 Grade 400 deformed steel reinforcing bars with 200 mm lap splice lengths at located the midspan. The specimens were tested in a horizontal position under a monotonic, four-point loading geometry. Load and deflection data were collected throughout testing and were subsequently used in an iterative moment-curvature analysis to calculate the maximum tensile resistance of the spliced reinforcement. This was then used to compare the structural performance of each remedial splice detail to the standard contact and non-contact lap splices. The wall splice specimens which contained non-contact lap splices with knock-out webs, s-shaped, and transverse reinforcement in the splice region achieved similar tensile capacities as the wall splice specimens with standard contact lap splices. Industry professionals have indicated that the installation of the remedial measures evaluated in this study would not affect the constructability of masonry assemblages in field situations. The splice detail with knock-out webs confined within the lap splice length was determined to be the most viable procedure as it can be installed to increase the resistance of non-contact lap splices in almost all construction situations. This remedial procedure was able to improve the tensile resistance of the lapped reinforcement by 63% compared to the wall splice specimens with standard non-contact lap splices.
74

Trophic Dynamic Interactions in a Temperate Karst River

Malloy, Elizabeth 01 December 2014 (has links)
Surface streams in karst landscapes are often characterized by high nutrient levels due to incomplete filtration through series of innumerable, below-ground conduits. Seasonal growth of the filamentous alga, Cladophora, is typically associated with nutrient-rich waters. This research compared macroinvertebrate food web structure between riverine reaches with contrasting underlying karst topography, nutrient levels, and Cladophora cover during summer 2012 and autumn 2013. Recent work in these reaches found a high correlation between Cladophora cover and nutrient content, particularly nitrate. Four questions were addressed during this study: 1. Do longitudinal trends in algal and consumer δ13C values relate to decreased DIC availability in larger watersheds? 2. Are trophic niche breadths narrower in more karstified reaches than in less karstified reaches due to longitudinal differences in Cladophora standing stocks? 3. Do differences in trophic-dynamic relationships between primary consumers and their food resources reflect the marked distinction in Cladophora standing stocks in two sections of the upper Green River that flow through differing levels of karstification? 4. Are consumers assimilating primarily autochthonous or allochthonous food resources? Consumers and algae became more 13C-depleted in downstream reaches, which is opposite to published data in other streams. Underlying causes for this pattern are uncertain, but one plausible cause is an increase in DIC availability downstream. Karstrelated hydrology may potentially alter or even reverse normal longitudinal gradients within in-stream producer and subsequently, consumer δ13C values. Since consumers were sampled during low-Cladophora conditions during 2013 and within a few weeks of the onset of the Cladophora bloom in 2012, stable isotopic results may be more representative of primary consumer diets during pre- Cladophora bloom periods. Although Cladophora cover was significantly higher in downstream reaches during both years, food-web structure was similar in all reaches. Consumer niche breadth was similar across reaches, and mixing model analyses suggested that primary consumers in all reaches assimilated similar amounts of Cladophora. The contribution of both autochthonous and allochthonous food resources to the assimilated diet of primary consumers appeared to be similarly important. These results suggest that allochthonous resources may be important in some midreach food webs, especially during periods of low algal growth.
75

Influences of a <i>Cladophora</i> Bloom on the Diets of <i>Amblema Plicata </i>and <i>Elliptio Dilatata</i> in the Upper Green River, Kentucky

Yates, Jennifer Maria 01 December 2012 (has links)
Freshwater mussels are the most imperiled group of freshwater invertebrates globally. Recent research suggests a better understanding of mussel feeding ecology may facilitate and improve conservation efforts. The use of stable isotopes is becoming an increasingly common method to study aquatic food webs. Carbon (C) and nitrogen (N) are two of the most frequently employed elements in food web studies. Differences in natural abundance of 13C/12C can indicate which food sources are the basal sources of carbon incorporated into a consumer’s tissue, while the ratio of 15N /14N provides a method of assessing trophic position within a food web. Attached macroalgae, including the genus Cladophora, may be the dominant primary producers in running water systems. Cladophora, however, has not yet been indicated as a prominent assimilated food source for freshwater mussels. The overall purpose of this study was to assess if the diet of two common Green River mussel species, Amblema plicata (Say) and Elliptio dilatata (Rafinesque) were influenced by the seasonal change in availability of Cladophora during a summer-autumn rapid growth period. Two specific questions were asked: 1) Are the assimilated diets different between control and treatment areas, and 2) are the assimilated diets influenced by differing Cladophora levels across the study period? A mesocosm approach was employed in order to manipulate Cladophora levels within a treatment area. Seventy-two mussels, 36 each species, were sampled across four months,twice between control (= reach-scale, heavy Cladophora cover) and treatment (= localscale removal of Cladophora) areas. The freeware program, IsoSource, a concentration weighted linear mixing model, was used to determine the potential contribution of potential food sources to the diet of both mussel species. IsoSource revealed that Cladophora was the primary assimilated food source for both species across the study period. Although assimilated diets were not different between control and treatment areas, diets were, however, influenced by Cladophora availability across time. The results of this study indicate that, during bloom conditions, Cladophora is the primary carbon source for both A. plicata and E. dilatata and may form the base of food webs in the upper Green River.
76

Understanding bacteria-protozoa interactions: from grazing resistance mechanisms to carbon flow in bacteria-protozoa food webs

Moreno, Ana Maria, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
Bacteria-protozoa interactions are one of the oldest between prokaryotic and eukaryotic organisms. As such, their study offers a unique opportunity to understand the different relationships that have evolved between them, including pathogenesis, and how their interaction can affect some important processes, such as wastewater treatment. In the first part of the work described here, the grazing defence mechanisms employed by Pseudomonas aeruginosa against the surface grazer, Acanthamoeba castellanii, were investigated. P. aeruginosa cells from early logarithmic growth and stationary phase were found to use different defence strategies. The type-III secretion system (T3SS) was found to be responsible for cytotoxicity of early logarithmic growth cells against A. castellanii. Of the three exotoxins produced by P. aeruginosa PA99, the phospholipase ExoU was found to make the greatest contribution to bacterial toxicity against the amoebae. Interestingly, a PA99null mutant that does not produce any known exotoxins but synthesises a secretion apparatus, was also found to be toxic to the amoeba, suggesting that the T3SS was being used to translocate other unknown toxins. Quorum sensing regulated virulence factor production was found to be involved in the grazing defence response of stationary phase P. aeruginosa cells. A. castellanii was found to be most susceptible to hydrogen cyanide and elastase produced during late logarithmic and stationary phase. In the second part, a stable isotope probing method was developed to investigate carbon flow through bacteria-protozoa food webs in activated sludge. The method was subsequently used to track carbon from bicarbonate and acetate through bacteria-orotozoa food webs under ammonia oxidising and nitrate reducing conditions. It was found that the Peritrich ciliate Campanella umbellaria, dominated the acquisition of carbon from bacteria with access to CO2 under ammonia oxidising conditions. Thus it appears that some of these bacteria must live in the plankton, as C. umbellaria is a filter feeder. No specific protozoan groups were found to dominate carbon acquisition from bacteria with access to acetate, under nitrate reducing conditions, probably due to label dilution. Overall the results presented here showed how bacteria-protozoa interactions have shaped infectious processes in higher eukaryotes, and the dynamics of carbon flow in activated sludge.
77

The effects of stream productivity on aquatic-terrestrial linkages

Burdon, Francis John January 2004 (has links)
The potential relationship between riparian arachnids and aquatic insect productivity was assessed in forest streams throughout the central South Island of New Zealand. Initially, a survey was conducted of thirty seven, first-third order forest streams. Streams were selected to represent a range of benthic invertebrate standing crops (as a surrogate measure of "productivity") from Banks Peninsula streams with relatively high benthic invertebrate densities to acid mine drainage streams near Reefton that were almost devoid of aquatic life. At each site benthic invertebrate densities and biomass were measured in riffle habitats and adjacent gravel bars were sampled for terrestrial invertebrates. At a sub-set of 16 sites, a 20 metre longitudinal web-building spider survey was conducted along each bank of the stream. As an additional component, a 20 metre transect starting at the stream margin and running perpendicularly into the forest was used to survey the density of web-building spiders with increasing distance from the stream. Results from the survey of in-situ stream insect biomass and gravel bar invertebrates showed a strong relationship between aquatic insect biomass and the biomass of riparian arachnids (R2 = 0.42, P < 0.001) having accounted for potentially confounding factors such as stream size, elevation, substrate and disturbance. The 20 metre longitudinal survey showed that streams with the highest in-situ insect biomass had significantly higher densities of web-building spiders along their banks (R2 = 0.28, P < 0.05), having accounted for potential confounding variables of elevation, habitat architecture and stream and channel width. The stream to forest survey showed a strong exponential decay in web-building spider densities with increasing distance from the stream (R2 = 0.96, P < 0.0001). Regardless of stream productivity web-building spiders were most abundant at the stream margins and rapidly declined to very low densities 20 metres from the stream. In order to further test the relationship between riparian web-building spider densities and stream insect productivity, a stream fertilization experiment was conducted on six first-second order streams in the Maimai experimental catchment, Reefton. Three streams were enriched by the addition of a fertiliser solution mainly consisting of sodium nitrate for seven months, and the other three streams were used as controls. Water chemistry, benthic invertebrate communities, emerging aquatic adults, and the densities of web-building spiders along the stream corridor and in the forest were monitored in three seasons (spring, summer and autumn) over the course of the nutrient-addition. By the end of the experiment, conductivity was significantly higher in nutrient-addition streams than in the control streams (F = 80.5, P < 0.001), but chlorophyll concentrations showed no significant differences between treatments. Both benthic mayfly densities (F = 6.15, P < 0.05) and the biomass of adult aquatic dipterans (Chironomidae, Simuliidae) (F = 9.25, P < 0.01) were significantly higher in nutrient-addition streams in the last sampling round. Spiders recorded from intercept traps indicated that by the end of the experiment spider activity was significantly higher within 2.5 metres of the nutrient-addition streams (F = 5.70, P < 0.01). However, seasonal densities of web-building spiders along the stream margin and in the forest decreased with no significant differences observed between nutrient-addition and control streams. The results from these studies indicate that adult insects emerging from streams represent an important source of prey that could influence the biomass and abundance of riparian arachnids. Additionally, the results imply that stream productivity and size could mediate the strength of the interaction between riparian and stream habitats. Moreover, feedback mechanisms present in both systems could have implications for such interactions. The elevated densities of web-building spiders observed at the stream margin led to the proposal of the "Highway Robber" hypothesis. This hypothesis suggests that such higher densities of spiders are the result of increased insect activity along the stream corridor: the emergence of adult aquatic insects was predicted to vary less over temporal and spatial scales than that of terrestrial insects due to the poorly synchronized life histories in many New Zealand stream insects. I conclude by suggesting that there are numerous anthropocentric perturbations such as loss of heterogeneity, introduced species, pollution and habitat degradation that could undermine and decouple the intimate linkages between aquatic and terrestrial ecosystems.
78

Species interactions and energy transfer in aquatic food webs

Nielsen, Jens Munk January 2015 (has links)
Food webs are structured by intricate nodes of species interactions which govern the flow of organic matter in natural systems. Despite being long recognized as a key component in ecology, estimation of food web functioning is still challenging due to the difficulty in accurately measuring species interactions within a food web. Novel tracing methods that estimate species diet uptake and trophic position are therefore needed for assessing food web dynamics. The focus of this thesis is the use of compound specific nitrogen and carbon stable isotopes and molecular techniques for assessing predator-prey interactions and energy flow in natural aquatic ecosystems, with a particular focus on the species links between phytoplankton and zooplankton. The use of δ15N amino acid values to predict organism trophic position are evaluated through a meta-analysis of available literature which included measurements from 359 marine species (article I). Through a controlled feeding study isotope incorporation in aquatic organisms, across both plant-animal and animal-animal species linkages is further assessed (article II). These studies showed that δ15N amino acid values are useful tools for categorizing animal trophic position. Organism feeding ecology influenced nitrogen trophic discrimination (difference in isotope ratio between consumer and diet), with higher discrimination in herbivores compared to omnivores and carnivores (article I). Nitrogen isotope trophic discrimination also varied among feeding treatments in the laboratory study (article II). The combined findings from articles I &amp; II suggest that researchers should consider using group specific nitrogen trophic discrimination values to improve accuracy in species trophic position predictions.  Another key finding in the controlled laboratory study (article II) was consistently low carbon isotope discrimination in essential amino acids across all species linkages, confirming that these compounds are reliable dietary tracers. The δ13C ratios of essential amino acids were applied to study seasonal dynamics in zooplankton resource use in the Baltic Sea (article III). Data from this study indicated that zooplankton assimilate variable resources throughout the growing season. Molecular diet analysis (article IV) showed that marine copepod and cladoceran species ingested both autotrophic and heterotrophic resources. Evidence from both articles III &amp; IV also revealed that zooplankton feed on a relatively broad range of diet items but not opportunistically on all available food sources. Mesozooplankton feeding patterns suggested that energy and nutritional flows were channelled through an omnivorous zooplankton food web including microzooplankton prey items. Overall the results of this thesis highlight that stable isotope ratios in specific compounds and molecular techniques are useful tracing approaches that improve our understanding of food web functioning. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript.</p><p> </p>
79

Závislost predace a rychlosti metabolismu na teplotě z pohledu kořisti i predátora

MODRÁ, Denisa January 2017 (has links)
Climate changes affect species interactions which can have cascading effect up to the ecosystem level. This work investigates the effects of temperature and predator size on predator prey interactions by measuring the feeding rates of predators and metabolic rates of both predator and prey, using dragonfly larvae Aeshna cyanea and toad tadpoles Bufo bufo as a model system. Possible consequences of the findings for the impacts of climate change and predation on amphibian populations are discussed.
80

Geometria de teias / Web geometry

Rodrigo Lopes Costa 28 May 2009 (has links)
A geometria de teias dedica-se ao estudo de invariantes locais para uma determinada configuração de folheações. Uma d-teia é uma coleção de folheações que estão em posição geral. Desta forma, uma d-teia plana, definida em \'R POT.2\' ou \'C POT.2\', nada mais é que uma família de d folheações por curvas. Apresentamos neste trabalho os principais conceitos da teoria clássica de teias, iniciada por W. Blaschke por volta de 1930, bem como uma abordagem atual utilizada no estudo de teias planas. São abordados dois tipos de problemas importantes na teoria: os problemas de linearização e de algebrização de teias. Provamos um resultado clássico no que concerne ao problema de linearização, e um resultado de algebrização de teias empregando métodos desenvolvidos mais recentemente / Web geometry is devoted to the study of local invariants of a certain configuration of foliations. A d-web is a collection of foliations in general position. Therefore, a d-web defined in \'R POT. 2\' or \'C POT. 2\' is just a family of d foliations by curves. We present in this work the main concepts of classical theory of webs, initiated by W. Blaschke around 1930, as well as newer methods used in the study of plane webs. We approach two important types of problems in the theory: problems of linearization and that of algebrization of webs. We prove a classical result concerning the linearization problem, and a result of algebrization of webs using recently developed methods

Page generated in 0.0453 seconds