• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Alternating current electroluminescence (AC-EL) with organic light emitting material

Perumal, Ajay Kumar 09 July 2012 (has links) (PDF)
We demonstrate a new approach for fabricating alternating current driven organic electroluminescent devices using the concept of doping in organic semiconductors. Doped charge transport layers are used for generation of charge carriers within the device, hence eliminating the need for injecting charge carriers from external electrodes. The device is an organic-inorganic hybrid: We exploit the mechanical strength and chemical stability of inorganic semiconductors and combine it with better optical properties of organic materials whose emission color can be chemically tuned so that it covers the entire visible spectrum. The device consists of an organic electroluminescence (EL) layer composed of unipolar/ambipolar charge transport materials doped with organic dyes (10 wt% ) as well as molecularly doped charge generation layers enclosed between a pair of transparent insulating metal oxide layers. A transparent indium doped tin oxide (ITO) layer acts as bottom electrode for light outcoupling and Aluminium (Al) as top reflective electrode. The electrodes are for applying field across the device and to charge the device, instead of injection of charge carriers in case of direct current (DC) devices. Bright luminance of up to 5000 cd m-2 is observed when the device is driven with an alternating current (AC) bias. The luminance observed is attributed to charge carrier generation and recombination, leading to formation of excitons within the device, without injection of charge carriers through external electrodes.
2

Alternating current electroluminescence (AC-EL) with organic light emitting material

Perumal, Ajay Kumar 26 June 2012 (has links)
We demonstrate a new approach for fabricating alternating current driven organic electroluminescent devices using the concept of doping in organic semiconductors. Doped charge transport layers are used for generation of charge carriers within the device, hence eliminating the need for injecting charge carriers from external electrodes. The device is an organic-inorganic hybrid: We exploit the mechanical strength and chemical stability of inorganic semiconductors and combine it with better optical properties of organic materials whose emission color can be chemically tuned so that it covers the entire visible spectrum. The device consists of an organic electroluminescence (EL) layer composed of unipolar/ambipolar charge transport materials doped with organic dyes (10 wt% ) as well as molecularly doped charge generation layers enclosed between a pair of transparent insulating metal oxide layers. A transparent indium doped tin oxide (ITO) layer acts as bottom electrode for light outcoupling and Aluminium (Al) as top reflective electrode. The electrodes are for applying field across the device and to charge the device, instead of injection of charge carriers in case of direct current (DC) devices. Bright luminance of up to 5000 cd m-2 is observed when the device is driven with an alternating current (AC) bias. The luminance observed is attributed to charge carrier generation and recombination, leading to formation of excitons within the device, without injection of charge carriers through external electrodes.

Page generated in 0.0546 seconds