• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 115
  • 16
  • 9
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 207
  • 207
  • 114
  • 35
  • 28
  • 27
  • 26
  • 25
  • 25
  • 24
  • 22
  • 22
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Genetic contributory factors to infertility

Raberi, Araz January 2017 (has links)
Introduction: In recent years, the average age of first reproduction has risen significantly, the mean now standing at around 30 years in many countries. The adverse effects of maternal age on fertility and reproduction have been well documented. However, the influence of paternal age on fertility, reproduction and postnatal health is relatively poorly understood, and 50% of all male infertility cases are classed as idiopathic or unexplained infertility. Methods: The aim of this study was to investigate factors that contribute to male infertility, split into two main parts. The first part focused on analysing data collected from patients who had undergone fertility treatment to assess the influence of different factors on infertility, especially at the genome level. The second part attempted to deal with some of the technical challenges of screening and diagnostic methods to study the genome, with the aim of providing tools that would assist future studies in pinpointing genetic factors responsible for infertility, especially in cases of idiopathic infertility. Results: Based on data from the first part of the study, it was determined that advanced paternal age can affect sperm progressive motility, sperm DNA integrity and the fertilisation rate of in vitro fertilisation (IVF) cycles, as well as the development of embryos. Direct analysis of sperm DNA fragmentation (SDF) and degradation levels revealed an association between elevated SDF and impaired embryo development. Furthermore, a correlation was shown between chromosome aneuploidy and variance in SDF and sperm DNA degradation. Moreover, aneuploidy can influence abnormal sperm morphology and consequently also progressive motility. Also, embryo development rate of IVF cycles on day three, demonstrated a significant decline in cycles where the sperm used for fertilisation had a high aneuploidy rate, which can highlight the reduced developmental capacity of aneuploid embryos. From the lifestyle factors assessed, only alcohol consumption significantly correlated with the sperm DNA damage. Therefore, poor semen quality may highlight damage that has been incurred by the sperm DNA. When the semen quality is suboptimal, the intracytoplasmic sperm injection (ICSI) technique is suggested as a standard strategy to improve the prognosis of ART. However, when the progressive motility is poor, the ICSI approach is not as effective. Based on our findings and in line with other studies, the only sperm parameter that can be affected by paternal age is sperm motility, which could be an indicator of SDF. Therefore, the decline in ICSI fertilisation rate in patients with impaired sperm progressive motility could be due to sperm DNA damage, and even ICSI cannot improve the fertilisation rate considerably. Discussion: The aim of the second part of this project was to establish a robust workflow for whole- genome amplification (WGA) and whole-genome sequencing of single cells to improve the coverage rate and fidelity, with the aim of providing means of detecting any mutation in the genome that might be responsible for reduced embryonic developmental competence. Towards this end, the efficiencies of two different WGA protocols (REPLI-g and TruePrime) were compared. Multiple technical factors required optimisation in order to create a suitable protocol. Our results demonstrated the overall superiority of REPLI-g compared to TruePrime in almost all the assessed parameters. The amplification rate of REPLI-g was much faster than that of TruePrime, and prolonged incubation led to overamplification and an increased duplication rate. However, the TruePrime method has a slower amplification rate and therefore, by increasing the incubation time, it was possible to improve the quality of the data. The modified protocol with reduced volume also had the most promising outcome in terms of the data produced, and could fulfil our expectations by being fast, cost-effective and efficient. Conclusion: In conclusion, the results from the first part of this study confirmed the negative impact of male age on assisted reproductive treatments, which can result in decreased success rates of fertilisation. Other factors such as sperm DNA damage may also contribute to this age effect, suggesting that assessing this parameter prior to fertility treatment, and attempting to mitigate elevated levels of sperm DNA damage, may be of value to older patients. Additionally, overcoming the technical challenges in studying genetic contributory factors in infertility is a promising step toward better understanding of the mutations and variations that are involved in this phenomenon.
62

Microbial and Genomic Analysis of Environmental Samples in Search of Pathogenic Salmonella

Skutas, Jorie L 03 November 2017 (has links)
Salmonellosis or “food poisoning” is a foodborne infection brought on by the pathogen Salmonella from the ingestion of the bacterium on contaminated foods such as vegetables. Infection from Salmonella leads to the highest incidence of hospitalizations and deaths each year, compared to any other bacterial foodborne illness. South Florida is the second largest agricultural winter vegetable producer in the United States, and contamination of vegetables is often observed in preharvest practices. A hardy bacterium, Salmonella, has been shown to live up to 6 weeks in soil and water up to 42°C without a host. The Florida Everglades is a tropical wetland that plays a large role in South Florida’s watershed. It can be divided into agricultural, conservation, and urban areas that connect Lake Okeechobee to Florida Bay by canals, swamps, and rivers. Inland canals tightly regulate water levels in South Florida as a means of flood control for residential and agricultural land. With the influences of anthropomorphic run off from agricultural and urban use, we hypothesized that microbial communities would significantly differ between three select sites in western (Collier county) versus three sites in more urban eastern Florida (Broward county): natural standing water, manmade drainage canal in agricultural areas, and manmade drainage canals in urban areas. We also hypothesized that pathogenic like Salmonella would be present in these habitats. Deep sequencing and ecological genetics analyses of the 16s rRNA V4 region yielded a total of 163,320 unique bacterial OTUs from a total of 139 samples collected monthly for one year in 2015 and part of 2016. Salmonella is not considered an abundant taxon within the microbial population. With the knowledge that Salmonella resides within the microbial population isolates were cultured from soil and water samples that were taken monthly from each site using a modified version of the Food and Drug Administration Bacterial Analytical Methods manual (FDA-BAM). The culturing resulted in 234 isolates obtained and 31 different serovars of Salmonella. Culturing showed that Salmonella favored months with high standing water and high-water temperatures that would lead to the ideal environment for survival. The most commonly occurring isolates within the sample set are those associated with agricultural animals. Though Salmonella may be a rare taxon within the microbial population given the correct environmental conditions such as warm temperatures it is possible to observe Salmonella year round within the South Florida environment.
63

Molecular evolution of voltage-gated calcium channels of L and N types and their genomic regions

Widmark, Jenny January 2012 (has links)
The expansion of the voltage-gated calcium channel alpha 1 subunit families (CACNA1) of L and N types was investigated by combining phylogenetic analyses (neighbour-joining and maximum likelihood) with chromosomal data. Neighbouring gene families were analysed to see if the chromosomal regions duplicated through whole genome doublings in vertebrates. Results show that both types of CACNA1 expanded in two ancient whole genome duplications as parts of larger genomic regions. Many gene families in these regions obtained copies in an additional teleost-specific genome duplication. This diversification of CACNA1 genes probably contributed to evolutionary innovations in nervous system function.
64

Viruses in marine animals: Discovery, detection, and characterizarion

Fahsbender, Elizabeth 07 July 2017 (has links)
Diseases in marine animals are emerging at an increasing rate. Disease forecasting enabled by virus surveillance presents a proactive solution for managing emerging diseases. Broad viral surveys aid in disease forecasting by providing baseline data on viral diversity associated with various hosts, including many that are not associated with disease. However, these viruses can become pathogens due to expansion in host or geographic range, as well as when changing conditions shift the balance between commensal viruses and the host immune system. Therefore, it is extremely valuable to identify and characterize viruses present in many different hosts in a variety of environments, regardless of whether the hosts are symptomatic or not. The lack of a universal gene shared by all viruses makes virus surveillance difficult, because no single assay exists that can detect the enormous diversity of viruses. Viral metagenomics circumvents this issue by purifying viral particles directly from host tissues and sequencing the nucleic acids, allowing for virus identification. However, virus identification is only the first step, which should ideally be followed by complete sequencing of the viral genome to identify genes of interest and develop assays to reveal viral prevalence, tropism, ecology, and pathogenicity. This dissertation focuses on the discovery of novel viruses in marine animals, characterization of complete viral genomes, and the development of subsequent diagnostic assays for further analysis of virus ecology. First, viral metagenomics was used to explore the viruses present in the healthy Weddell seal (Leptonychotes weddellii) population in Antarctica, which led to the discovery of highly prevalent small, circular single-stranded DNA (ssDNA) viruses. The lack of knowledge regarding the viruses of Antarctic wildlife warrants this study to determine baseline viral communities in healthy animals that can be used to survey changes over time. From the healthy Weddell seals, viral metagenomics led to the discovery of 152 novel anellovirus genomes, encompassing two anellovirus species. Characterizing these viruses is important for understanding the prevalence and diversity of ssDNA viruses, which have only recently been described in marine animals. Furthermore, since emerging diseases can be caused by changing conditions affecting host susceptibility to a virus that was previously not related to disease (opportunistic pathogen), having baseline data allows for quick identification of the pathogen. In addition to determining baseline data, viral metagenomics can explore the role of viruses in disease. A novel virus, Asterias forbesi-associated circular virus (AfaCV), was discovered in the Atlantic sea star Asterias forbesi displaying symptoms of sea star wasting disease (SSWD). AfaCV was the first circular replicase-encoding ssDNA (CRESS-DNA) virus discovered in echinoderms, but it was only present in 10% of SSWD sea stars indicating it is not involved in the development of the disease. This dissertation also focuses on elucidating the role of two previously characterized viruses, chelonid fibropapillomatosis-associated herpesvirus (CHHV5; Chelonid herpesvirus 5, ChHV5) and Zalophus californianus anellovirus (ZcAV), in animal health. PCR amplicon sequencing was used to obtain large portions of the 132 kb genome of ChHV5, the putative etiological agent of the neoplastic sea turtle disease, fibropapillomatosis. Obtaining the genome of ChHV5 from Florida green, Kemp’s ridley, and loggerhead sea turtles provides data for phylogenetic analysis across geographic locations and sea turtle species, as well as a reference for designing downstream molecular assays to examine viral latency. ZcAV was first described from the lungs of captive sea lions involved in a mortality event. PCR could not detect ZcAV in the blood of infected animals, and since sea lions are a protected species, it is not possible to obtain lung biopsies from live sea lions to determine ZcAV prevalence or its role in sea lion health. To answer these important questions, an enzyme-linked immunosorbent assay (ELISA) was developed to detect antibodies to ZcAV in serum from wild sea lion populations. This newly developed ELISA showed that sea lions mount an immune response to ZcAV, and was used to determine the prevalence of ZcAV among wild sea lion populations. This dissertation makes an important contribution to marine science through discovery and characterization of viruses present in healthy and diseased marine animals. Several different methods were used for virus whole-genome sequencing including viral metagenomics, PCR amplicon sequencing, and target enrichment. These findings were expanded upon by developing and using PCR assays and a serological assay to screen for virus prevalence. These methods have implications for viral surveillance and understanding the role of novel viruses in animal health.
65

Fractionation Resistance of Duplicate Genes Following Whole Genome Duplication in Plants as a Function of Gene Ontology Category and Expression Level

Chen, Eric Chun-Hung January 2015 (has links)
With the proliferation of plant genomes being sequenced, assembled, and annotated, duplicate gene loss from whole genome duplication events, also known in plants as frac- tionation, has shown to have a different pattern from the classic gene duplication models described by Ohno in 1970. Models proposed more recently, the Gene Balance and Gene Dosage hypotheses, try to model this pattern. These models, however, disagree with each other on the relative importance of gene function and gene expression. In this thesis we explore the effects of gene function and gene expression on duplicate gene loss and retention. We use gene sequence similarity and gene order conservation to construct our gene fam- ilies. We applied multiple whole genome comparison methods across various plants in rosids, asterids, and Poaceae in looking for a general pattern. We found that there is great consistency across different plant lineages. Genes categorized as metabolic genes with low level of expression have relatively low fractionation resistance, losing duplicate genes readily, while genes categorized as regulation and response genes with high level of expression have relatively high fractionation resistance, retaining more duplicate gene pairs or triples. Though both gene function and gene expression have important effects on retention pattern, we found that gene function has a bigger effect than gene expression. Our results suggest that both the Gene Balance and Gene Dosage models account to some extent for fractionation resistance.
66

A Continuous Analog of Run Length Distributions Reflecting Accumulated Fractionation Events

Yu, Zhe January 2016 (has links)
We propose a new, continuous model of the fractionation process (duplicate gene deletion after polyploidization) on the real line. The aim is to infer how much DNA is deleted at a time, based on segment lengths for alternating deleted (invisible) and undeleted (visible) regions. After deriving a number of analytical results for "one-sided" fractionation, we undertake a series of simulations that help us identify the distribution of segment lengths as a gamma with shape and rate parameters evolving over time. This leads to an inference procedure based on observed length distributions for visible and invisible segments. We suggest extensions of this mathematical and simulation work to biologically realistic discrete models, including two-sided fractionation.
67

Evaluation of the Genetic Differences Between Two Subtypes of Campylobacter fetus (Fetus and Venerealis) in Canada

Mukhtar, Lenah January 2013 (has links)
The pathogen Campylobacter fetus (CF) is classified into two subspecies, Campylobacter fetus subspecies fetus (CFF) and Campylobacter fetus subspecies venerealis (CFV). Even though CFF and CFV are genetically closely related, they exhibit differences in their host adaptation; CFF inhabits the gastrointestinal tract of both humans and several animal species, while classical CFV is specific to the bovine genital tract and is of particular concern with respect to international bovine trade regulation. Traditionally, differentiation between the two subspecies has been achieved using a limited number of biochemical tests but more rapid and definitive genetic methods of discrimination are desired. A recent study suggested that the presence of a genomic island only in CFV could discriminate between the two sub- species but this hypothesis could not be confirmed on a collection of isolates originating in Canada. To identify alternative gene targets that would support accurate subspecies discrimination, this study has applied several approaches including suppression subtractive hybridization and whole genome sequencing supplemented with optical mapping. A subtractive hybridization screen, using a well-characterized CFV isolate recovered during routine screening of bulls in an Artificial Insemination center in western Canada and that lacked much of the genomic island and a typical Canadian CFF isolate, yielded 50 clones; characterization of these clones by hybridization screening against selected CF isolates and by nucleotide sequence BLAST analysis identified three potentially CFV-specific clones that contained inserts originating from a second genomic island. Further screening using a larger CF sample set found that only Clone #35 was truly CFV-specific. Optical maps (NcoI digest) of the Canadian CFF and CFV isolates used for the subtractive hybridization showed that certain regions of these genomes were quite distinct from those of two reference strains. Whole genome sequencing of these two isolates identified two target genes (PICFV5_ORF548 and CFF_Feature #3) that appear to be selectively retained in the two subspecies. Screening of a collection of CF isolates by PCRs targeting these three loci (SSH_Clone #35, PICFV5_ORF548 and CFF_Feature #3) supported their use for subspecies discrimination. This work demonstrates the complex genomic diversity associated with these CF subtypes and the challenge posed by their discrimination using limited genetic loci.
68

Étude des altérations du programme de réplication lors du vieillissement cellulaire : peuvent-elles être reprogrammées ? / Study of replication program alterations upon aging : can they be reprogramed back ?

Schwerer, Hélène 17 December 2014 (has links)
La réplication de l'ADN, qui doit assurer à chaque cycle cellulaire une copie fidèle du génome pour que les cellules filles héritent du même génome, est un processus hautement régulé, faisant intervenir son organisation en chromatine mais aussi sa dynamique au sein de l'architecture nucléaire. Le vieillissement cellulaire, qu'il soit physiologique, pathologique ou induit in vitro par des conditions de culture sub-optimales, est accompagné de modifications de l'organisation du génome en chromatine, susceptibles de modifier la régulation spatiotemporelle du programme de réplication. Dans quelle mesure ces modifications sont réversibles et s'accompagnent d'une restauration du programme de réplication sont des questions que nous avons abordées. Notre étude a donc consisté dans un premier temps à analyser les modifications du programme de la réplication, dans différentes situations de vieillissement cellulaire, afin de vérifier notre hypothèse. Nous avons analysé sur l'ensemble du génome l'organisation spatiale (le long du génome) et temporelle des domaines de réplication, le timing, de cellules prolifératives ou approchant de la sénescence réplicative, de donneurs jeunes, âgés ou encore atteints de vieillissement accéléré ou progéria. Nous avons pu observer que certains domaines de timing permettent de distinguer des cellules jeunes de cellules âgées, ou des cellules prolifératives de pré-sénescentes. Afin d'explorer la réversibilité de ces processus, nous avons utilisé la reprogrammation en cellules souches pluripotentes induites ou iPS, suivie d'une redifférenciation fibroblastique. Nous avons pu démontrer que les iPS produites présentaient toutes les mêmes profils de timing, correspondant à celui d'une cellule pluripotente, indiquant que les modifications liées à l'âge ou à la sénescence pouvaient être reprogrammées. Ceci a ensuite été confirmé par une redifférenciation de ces iPS en cellules fibroblastiques dont les profils de timing de réplication ont pu être associés à ceux de fibroblastes jeunes. Cette étude nous a permis de mettre en évidence l'extrême plasticité de l'organisation spatio-temporelle de la réplication, révélant la possibilité de restaurer une dynamique de réplication altérée avec le vieillissement et l'entrée en sénescence, en manipulant le destin cellulaire vers un état indifférencié. Cette étude de la dynamique des domaines de réplication qui accompagne les modifications épigénétiques de la vie cellulaire a été complétée par l'étude à l'échelle moléculaire du rôle d'une histone déméthylase, Jarid1C/KDM5C, dans la réplication au sein des clusters d'origines. Ensemble, ces résultats apportent de nouveaux éléments sur l'interdépendance des dynamiques chromatiniennes et de réplication au cours de la vie cellulaire. / DNA replication allows at each cell cycle the exact copy of the genome that will be transmitted to daughter cells. Thus, the replication process is highly regulated in concert with its chromatin organization but also its dynamics in the nuclear architecture. Cellular ageing, be it physiologic, pathologic or induced in vitro by sub-optimal culture conditions, is accompanied by modifications of the chromatin organization of the genome. This could lead to spatio-temporal modifications of the replication program. We studied to what extent these modifications are reversible and could lead to the recovery of the replication program. In a first step, we analyzed modifications of the replication program upon several ageing situations to test our hypothesis. We analyzed the whole genome spatio-temporal organization of replication domains, the timing, of proliferating or near-senescent cells, of young, old or progeria (a premature ageing disease)-affected donors. We observed that young cells could be distinguished from old cells, and proliferative from near-senescent, by looking at some particular timing domains. To explore the reversibility of these processes, we used reprogramming to induce pluripotent stem cells (iPS cells) followed by fibroblastic re-differentiation. We were able to demonstrate that the derived iPS cells have similar timing profiles corresponding to pluripotent cells profiles: ageing- and senescence-related modifications of the replication timing could be reprogrammed. It was confirmed by re-differentiating these iPS into fibroblastic cells which timing profiles could be associated to young fibroblasts ones. By manipulating cell fate toward an undifferentiated state, this study shows the extreme plasticity of the DNA replication spatio-temporal organization and highlights a chance to restore the replication dynamics when altered by ageing and senescence. This study of the replication dynamics linked to the epigenetic modifications of cells life was completed by a study at the molecular scale of the Jarid1C/KDM5C histone demethylase influence on replication within origin clusters. Together, these results bring new insights into the interdependency of chromatin and replication dynamics during cell fate modifications.
69

Detecting and sequencing Mycobacterium tuberculosis aDNA from archaeological remains

Forst, Jannine January 2015 (has links)
Tuberculosis has been an important disease throughout human history, shaping countless past populations. The archaeological study of the causative agents of tuberculosis, members of the Mycobacterium tuberculosis Complex (MTBC), is hindered by the non-diagnostic nature of tuberculosis-associated skeletal changes. As such, ancient DNA (aDNA) or palaeogenetic analyses have become an important tool for identifying tuberculosis in past populations. However, due to the age and variable preservation of aDNA, there are often issues with sporadic results and false negatives. The overall aim of the work presented here was to use different methods, including traditional target-specific PCR, to identify and detect tuberculosis aDNA in archaeological remains. The main objectives within this overarching aim were to first test a method called whole genome amplification (WGA), used to non-specifically amplify all the DNA within a sample, and its potential to improve the yield of aDNA from skeletal remains (Chapters 3 and 4). To determine the extent of its impact, WGA was used in a comparative context, where each archaeological sample analysed was separately subjected to two methods of MTBC detection - the traditional targeted PCR method and the same method assisted by the initial application of WGA. The results show that applying WGA before the traditional targeted PCR methodology to detect the presence of MTBC pathogens in skeletal remains is only useful and viable in some cases, likely depending on the age and preservation of the sample. The second objective was to use next generation sequencing to obtain more information on the aDNA composition of certain archaeological samples and answer questions beyond the scope of traditional target-specific PCR techniques (Chapter 5). Although most of the sequencing runs were variably unsuccessful, the composition of two samples, both known to probably contain tuberculosis aDNA, could be analysed. The samples both contained similar amounts of mycobacterial aDNA and varying amounts of both human and even potentially human intestinal flora DNA. Finally, the third objective was to determine if MTBC aDNA could be detected in a rib sample from Private William Braine of the lost Franklin Expedition using standard target-specific PCR (Chapter 6). In this case study, no evidence of tuberculosis ancient DNA was found. The work done through-out highlights the difficulties of ancient DNA research and, in Chapter 4, shows the importance of using more than a single sample to evaluate methods for application in palaeogenetic contexts.
70

Identification of Genes Involved in Flocculation by Whole Genome Sequencing of Thauera aminoaromatica Strain MZ1T Floc-defective Mutants

Prombutara, Pinidphon 12 1900 (has links)
Thauera aminoaromatica MZ1T, a floc-forming bacterium isolated from an industrial activated sludge wastewater treatment plant, overproduces exopolysaccharide (EPS) leading to viscous bulking. This phenomenon results in poor sludge settling and dewatering during the clarification process. To identify genes responsible for bacterial flocculation, a whole genome phenotypic sequencing technique was applied. Genomic DNA of MZ1T flocculation-deficient mutants were subjected to massively parallel sequencing. The resultant high-quality reads were assembled and compared to the reference genome of the wild type genome. We identified nine nonsynonymous mutations and one nonsense mutation putatively involved in EPS biosynthesis. Complementation of the nonsense mutation located in an EPS deacetylase gene restored the flocculating phenotype. The FTIR spectra of EPS isolated from the wild-type showed reduced C=O peak of the N-acetyl group at 1665 cm-1 as compared to the spectra of MZ1T floc-deficient mutant EPS, suggesting that the WT EPS was partially deacetylated. Gene expression analysis also demonstrated the deacetylase gene transcript increased before flocculation occurred. The results suggest that the deacetylation of MZ1T EPS is crucial for flocculation. The information obtained from this study will be useful for preventing viscous bulking and wastewater treatment system failure, and may have potential applications in the biotechnology sector for the controlled removal of cells.

Page generated in 0.1587 seconds