Spelling suggestions: "subject:"why"" "subject:"whys""
1 |
Tools and Techniques for the Verification of Modular Stateful Code / Outils et techniques pour la vérification de programmes impératives modulairesParreira Pereira, Mário José 10 December 2018 (has links)
Cette thèse se place dans le cadre des méthodes formelles et plus précisément dans celui de la vérification déductive et du système Why3. Ce dernier fournit un ensemble d'outils pour la spécification, l'implémentation et la vérification à l'aide de démonstrateurs externes. Why3 propose en particulier un langage de programmation adapté à la preuve, appelé WhyML. Un aspect important de ce langage est le code fantôme, à savoir des éléments de programme introduits exclusivement pour les besoins de la spécification et de la preuve. Pour obtenir un code exécutable, le code fantôme est éliminé par un processus automatique appelé extraction. L'une des contributions principales de cette thèse est la formalisation et l'implémentation du mécanisme d'extraction deWhy3. La formalisation consiste à montrer que le programme extrait préserve la sémantique du programme de départ, en s'appuyant notamment sur un système de types avec effets. Ce mécanisme d'extraction a été utilisé avec succès pour obtenir plusieurs modules OCaml corrects par construction, dans le cadre d'une bibliothèque vérifiée de structures de données et d'algorithmes. Cet effort de preuve a conduit à deux autres contributions de cette thèse.La première est une technique systématique pour la vérification de structures avec pointeurs, à l'aide de modèles du tas délimités.Une preuve entièrement automatique d'une structure union-find a pu être obtenue grâce à cette technique. La seconde contribution est un moyen de spécifier un algorithme d'itération indépendamment de son implémentation. Plusieurs curseurs et itérateurs d'ordre supérieur ont été spécifiés et vérifiés en utilisant cette approche. / This thesis is set in the field of formal methods, more precisely in the domain of deductive program verification. Our working context is the Why3 framework, a set of tools to implement, formally specify, and prove programs usingoff-the-shelf theorem provers. Why3 features a programming language,called WhyML, designed with verification in mind. An important feature of WhyML is ghost code: portions of the program that are introduced for the sole purpose of specification andverification. When it comes to get an executable implementation, ghost code is removed by an automatic process called extraction. One of the main contributions of this thesis is the formalization and implementation of Why3's extraction. The formalization consists in showing that the extracted program preserves the same operational behavior as the original source code, based on a type and effect system. The new extraction mechanism has been successfully used to get correct-by-construction OCaml modules, which are part of averified OCaml library of data structures and algorithms. This verification effort led to two other contributions of this thesis.The first is a systematic approach to the verification ofpointer-based data structures using ghost models of fragments of the heap. A fully automatic verification of a union-find data structure was achieved using this technique. The second contribution is a modular way to reason about iteration, independently of the underlying implementation. Several cursors and higher-orderiterators have been specified and verified with this approach.
|
2 |
Un système de types pragmatique pour la vérification déductive des programmes / A Pragmatic Type System for Deductive Software VerificationGondelman, Léon 13 December 2016 (has links)
Cette thèse se place dans le contexte de la vérification déductive des programmes et a pour objectif de formaliser un certain nombre de concepts qui sont mis en œuvre dans l'outil de vérification Why3.L'idée générale est d'explorer des solutions qu'une approche à base de systèmes de types peut apporter à la vérification. Nous commençons par nous intéresser à la notion du code fantôme, une technique implantée dans de nombreux outils de vérification modernes, qui consiste à donner à des éléments de la spécification les apparences d'un code opérationnel. L'utilisation correcte du code fantôme requiert maintes précautions puisqu'il ne doit jamais interférer avec le reste du code. Le premier chapitre est consacré à une formalisation du code fantôme, en illustrant comment un système de types avec effets en permet une utilisation à la fois correcte et expressive. Puis nous nous intéressons à la vérification des programmes manipulant des pointeurs. En présence d'aliasing, c'est-à-dire lorsque plusieurs pointeurs manipulés dans un programme dénotent une même case mémoire, la spécification et la vérification deviennent non triviales. Plutôt que de nous diriger vers des approches existantes qui abordent le problème d'aliasing dans toute sa complexité, mais sortent du cadre de la logique de Hoare, nous présentons un système de types avec effets et régions singletons qui permet d'effectuer un contrôle statique des alias avant même de générer les obligations de preuve. Bien que ce système de types nous limite à des pointeurs dont l'identité peut être connue statiquement, notre observation est qu'il convient à une grande majorité des programmes que l'on souhaite vérifier. Enfin, nous abordons les questions liées à la vérification de programmes conçus de façon modulaire. Concrètement, nous nous intéressons à une situation où il existe une barrière d'abstraction entre le code de l'utilisateur et celui des bibliothèques dont il dépend. Cela signifie que les bibliothèques fournissent à l'utilisateur une énumération de fonctions et de structures de données manipulées, sans révéler les détails de leur implémentation. Le code de l'utilisateur ne peut alors exploiter ces données qu'à travers un ensemble de fonctions fournies. Dans une telle situation, la vérification peut elle-même être modulaire. Du côté de l'utilisateur, la vérification ne doit alors s'appuyer que sur des invariants de type et des contrats de fonctions exposés par les bibliothèques. Du côté de ces dernières, la vérification doit garantir que la représentation concrète raffine correctement les entités exposées, c'est-à-dire en préservant les invariants de types et les contrats de fonctions. Dans le troisième chapitre nous explorons comment un système de types permettant le contrôle statique des alias peut être adapté à la vérification modulaire et le raffinement des structures de données. / This thesis is conducted in the framework of deductive software verification.is aims to formalize some concepts that are implemented in the verification tool Why3. The main idea is to explore solutions that a type system based approach can bring to deductive verification. First, we focus our attention on the notion of ghost code, a technique that is used in most of modern verification tools and which consists in giving to some parts of specification the appearance of operational code. Using ghost code correctly requires various precautions since the ghost code must never interfere with the operational code. The first chapter presents a type system with effects illustrating how ghost code can be used in a way which is both correct and expressive. The second chapter addresses some questions related to verification of programs with pointers in the presence of aliasing, i.e. when several pointers handled by a program denote a same memory cell. Rather than moving towards to approaches that address the problem in all its complexity to the costs of abandoning the framework of Hoare logic, we present a type system with effects and singleton regions which resolves a liasing issues by performing a static control of aliases even before the proof obligations are generated. Although our system is limited to pointers whose identity must be known statically, we observe that it fits for most of the code we want to verify. Finally, we focus our attention on a situation where there exists an abstraction barrier between the user's code and the one of the libraries which it depends on. That means that libraries provide the user a set of functions and of data structures, without revealing details of their implementation. When programs are developed in a such modular way, verification must be modular it self. It means that the verification of user's code must take into account only function contracts supplied by libraries while the verification of libraries must ensure that their implementations refine correctly the exposed entities. The third chapter extends the system presented in the previous chapter with these concepts of modularity and data refinement.
|
3 |
Certified algorithms for program slicing / Algorithmes certifiés pour la simplification syntaxique de programmesLéchenet, Jean-Christophe 19 July 2018 (has links)
La simplification syntaxique, ou slicing, est une technique permettant d’extraire, à partir d’un programme et d’un critère consistant en une ou plusieurs instructions de ce programme, un programme plus simple, appelé slice, ayant le même comportement que le programme initial vis-à-vis de ce critère. Les méthodes d’analyse de code permettent d’établir les propriétés d’un programme. Ces méthodes sont souvent coûteuses, et leur complexité augmente rapidement avec la taille du code. Il serait donc souhaitable d’appliquer ces techniques sur des slices plutôt que sur le programme initial, mais cela nécessite de pouvoir justifier théoriquement l’interprétation des résultats obtenus sur les slices. Cette thèse apporte cette justification pour le cas de la recherche d’erreurs à l’exécution. Dans ce cadre, deux questions se posent. Si une erreur est détectée dans une slice, cela veut-il dire qu’elle se déclenchera aussi dans le programme initial ? Et inversement, si l’absence d’erreurs est prouvée dans une slice, cela veut-il dire que le programme initial en est lui aussi exempt ? Nous modélisons ce problème sur un mini-langage impératif représentatif, autorisant les erreurs et la non-terminaison, et montrons le lien entre la sémantique du programme initial et la sémantique de sa slice, ce qui nous permet de répondre aux deux questions précédentes. Pour généraliser ces résultats, nous nous intéressons à la première brique d’un slicer indépendant du langage : le calcul générique des dépendances de contrôle. Nous formalisons une théorie élégante de dépendances de contrôle sur des graphes orientés finis arbitraires prise dans la littérature et améliorons l’algorithme de calcul proposé.Pour garantir un maximum de confiance dans les résultats, tous ces travaux sont prouvés dans l’assistant de preuve Coq ou dans l’outil de preuve Why3. / Program slicing is a technique that extracts, given a program and a criterion that is one or several instructions in this program, a simpler program, called a slice, that has the same behavior as the initial program with respect to the criterion. Program analysis techniques focus on establishing the properties of a program. These techniques are costly, and their complexity increases with the size of the program. Therefore, it would be interesting to apply these techniques on slices rather than the initial program, but it requires theoretical foundations to interpret the results obtained on the slices. This thesis provides this justification for runtime error detection. In this context, two questions arise. If an error is detected in the slice, does this mean that it can also be triggered in the initial program? On the contrary, if the slice is proved to be error-free, does this mean that the initial program is error-free too? We model this problem using a small representative imperative language containing errors and non-termination, and establish the link between the semantics of the initial program and of its slice, which allows to give a precise answer to the two questions raised above. To apply these results in a more general context, we focus on the first step towards a language-independent slicer: an algorithm computing control dependence. We formalize an elegant theory of control dependence on arbitrary finite directed graphs taken from the literature and improve the proposed algorithm. To ensure a high confidence in the results, we prove them in the Coq proof assistant or in the Why3 proof plateform.
|
Page generated in 0.0365 seconds