Spelling suggestions: "subject:"wiseness"" "subject:"wisely""
1 |
Opportunistic Networking : Congestion, Transfer Ordering and ResilienceBjurefors, Fredrik January 2014 (has links)
Opportunistic networks are constructed by devices carried by people and vehicles. The devices use short range radio to communicate. Since the network is mobile and often sparse in terms of node contacts, nodes store messages in their buffers, carrying them, and forwarding them upon node encounters. This form of communication leads to a set of challenging issues that we investigate: congestion, transfer ordering, and resilience. Congestion occurs in opportunistic networks when a node's buffers becomes full. To be able to receive new messages, old messages have to be evicted. We show that buffer eviction strategies based on replication statistics perform better than strategies that evict messages based on the content of the message. We show that transfer ordering has a significant impact on the dissemination of messages during time limited contacts. We find that transfer strategies satisfying global requests yield a higher delivery ratio but a longer delay for the most requested data compared to satisfying the neighboring node's requests. Finally, we assess the resilience of opportunistic networks by simulating different types of attacks. Instead of enumerating all possible attack combinations, which would lead to exhaustive evaluations, we introduce a method that use heuristics to approximate the extreme outcomes an attack can have. The method yields a lower and upper bound for the evaluated metric over the different realizations of the attack. We show that some types of attacks are harder to predict the outcome of and other attacks may vary in the impact of the attack due to the properties of the attack, the forwarding protocol, and the mobility pattern. / WISENET
|
2 |
Design and Performance of Diversity based Wireless Interfaces for Sensor Network NodesJobs, Magnus January 2013 (has links)
The main focus of the work presented in this licentiate thesis concerns antenna design, adaptive antenna control and investigation on how the performance of small wireless nodes can be increased by inclusion of multiple antennas. In order to provide an end-user suitable solution for wireless nodes the devices require both small form factor and good performance in order to be competitive on the marked and thus the main part of this thesis focuses on techniques developed to achieve these goals. Two prototype systems have been developed where one has been used by National Defence Research Agency (FOI) to successfully monitor a test-subject moving in an outdoor terrain. The other prototype system shows the overall performance gain achievable in a wireless sensor node when multiple antennas and antenna beam steering is used. As an example of how to include multiple antennas in a wireless node the concept of using dual conformal patch antennas for wireless nodes is presented. The proposed antenna showed an excess of 10 dB gain when using a single driven antenna element as would be the case in a system utilizing antenna selection combining. When used as a 2-element phased array, up to 19 dB gain was obtained in a multiscattering environment. Using the second order resonance the proposed antenna structure achieves low mutual coupling and a reflection coefficient lower than -15 dB. The presented antenna design shows how a dual antenna wireless node can be designed using discrete phase control with passive matching which provides a good adaptive antenna solution usable for wireless sensor networks. The inclusion of discrete phase sweep diversity in a wireless node has been evaluated and shown to provide a significant diversity gain. The diversity gain of a discrete phase sweep diversity based system was measured in both a reverberation chamber and a real life office environment. The former environment showed between 5.5 to 10.3 dB diversity gain depending on the detector architecture and the latter showed a diversity gain ranging from 1 to 5.4 dB. Also the performance of nodes designed to be placed in a high temperature and multiscattering environment (the fan stage of a jet engine) has been evaluated. The work was carried out in order to verify that a wireless sensor network is able to operate in such a multiscattering environment. It was shown that the wireless nodes are able to operate in an emulated turbine environment based on real-life measured turbine fading data. The tested sensor network was able to transmit 32 byte packages using cyclic redundancy check at 2 Mbps at an engine speed of 13.000 rpm. / WISENET / WISEJET
|
3 |
Wireless Sensor Network Systems in Harsh Environments and Antenna Measurement TechniquesGrudén, Mathias January 2014 (has links)
Wireless sensor network (WSN) has become a hot topic lately. By using WSN things that previously were difficult or impossible to measure has now become available. One of the main reasons using WSN for monitoring is to save money by cost optimization and/or increase safety by letting the user knowing the physical status of the monitored structure. This thesis considers four main topics, empirical testing of WSN in harsh environments, antenna designs, antenna measurements and radio environment emulation. The WSN has been tested in train environment for monitoring of ball bearings and inside jet engines to monitor strain of blades and temperatures. In total, two investigations have been performed aboard the train wagon and one in the jet engine. The trials have been successful and provide knowledge of the difficulties with practical WSN applications. The key issues for WSN are robust communication, energy management (including scavenging) and physical robustness. For the applications of WSN in harsh environments antennas has to be designed. In the thesis, two antennas has been designed, one for train environment and one for the receiver in the jet engine. In the train environment, a more isotropic radiation pattern is preferable; hence a small dual layered patch antenna is designed. The antenna is at the limit of being electrically small; hence slightly lower radiation efficiency is measured. For the WSN in the jet engine, a directive patch array is designed on an ultra-thin and flexible substrate. The thin substrate of the antenna causes rather lower radiation efficiency. But the antenna fulfils the requirements of being conformal and directive. In reverberation chambers are used to measure antennas, but there are difficulties to provide a realistic radio environment, for example outdoor or on-body. In this thesis, a large reverberation chamber is designed and verified. It enables measurement between 400 MHz and 3 GHz. Also, a sample selection method is designed to provide a post processing possibilities to emulate the radio environment inside the chamber. The method is to select samples from a data set that corresponds to a desired probability density function. The method presented in this thesis is extremely fast but the implementation of the method is left for future research. / WISENET / WiseJet
|
4 |
Wireless Interface Technologies for Sensor NetworksJobs, Magnus January 2015 (has links)
The main focus of the work presented in this thesis concerns the development and improvement of Wireless Sensor Networks (WSNs) as well as Wireless Body Area Networks (WBANs). WSN consist of interlinked, wireless devices (nodes) capable of relaying data wirelessly between the nodes. The applications of WSNs are very broad and cover both wireless fitness monitoring systems such as pulse watches or wireless temperature monitoring of buildings, among others. The topics investigated in the work presented within this thesis covers antenna design, wireless propagation environment evaluation and modeling, adaptive antenna control and wireless nodes system design and evaluation. In order to provide an end-user suitable solution for wireless nodes the devices require both small form factor and good performance in order to be competitive on the marked and thus the main part of this thesis focuses on techniques developed and data collected to help achieve these goals. Several different prototype systems have been developed which have been used to measure data by the Swedish Defence Research Agency (FOI), GKN Aerospace Sweden AB, the Swedish Transport Administration. The system developed with GKN Aerospace was used to do real-time test measurements inside a running RM12 jet engine and required a substantial amount of measurements, environmental modeling and system validation in order to properly design a wireless system suitable for the harsh and fast fading environment inside a jet engine. For FOI improvements were made on a wearable wireless body area network initially developed during the authors master thesis work. Refinements included work on new generation wireless nodes, antenna packaging and node-supported diversity techniques. Work and papers regarding the design of different types of antennas suitable for wireless nodes are presented. The primary constraints on the presented antennas are the limited electrical size. The types of antennas developed include electrically small helix antennas manufactured both on stretchable substrates consisting of a PDMS substrate with Galinstan as the liquid metal conductors, screen printed silver ink for helix antennas and conformal dual patch antennas for wireless sensor nodes. Other standard type antennas are included on the wireless sensors as well.
|
Page generated in 0.0356 seconds