Spelling suggestions: "subject:"wolken"" "subject:"wolkenbildung""
1 |
Shape-temperature relationship of ice crystals in mixed-phase clouds based on observations with polarimetric cloud radar / Zusammenhang zwischen Umgebungstemperatur und der Form von Eiskristallen in Mischphasenwolken auf Basis von Beobachtungen mit einem polarimetrischen WolkenradarMyagkov, Alexander 04 January 2017 (has links) (PDF)
This thesis is devoted to the experimental quantitative characterization of the shape and orientation distribution of ice particles in clouds. The characterization is based on measured and modeled elevation dependencies of the polarimetric parameters differential reflectivity and correlation coefficient. The polarimetric data is obtained using a newly developed 35-GHz cloud radar MIRA-35 with hybrid polarimetric configuration and scanning capabilities. The full procedure chain of the technical implementation and the realization of the setup of the hybrid-mode cloud radar for the shape determination are presented. This includes the description of phase adjustments in the transmitting paths, the introduction of the general data processing scheme, correction of the data for the differences of amplifications and electrical path lengths in the transmitting and receiving channels, the rotation of the polarization basis by 45°, the correction of antenna effects on polarimetric measurements, the determination of spectral polarimetric variables, and the formulation of a scheme to increase the signal-to-noise ratio. Modeling of the polarimetric variables is based on existing backscattering models assuming the spheroidal representation of cloud scatterers. The parameters retrieved from the model are polarizability ratio and degree of orientation, which can be assigned to certain particle orientations and shapes.
In the thesis the first quantitative estimations of ice particle shape at the top of liquid-topped clouds are presented. Analyzed ice particles were formed in the presence of supercooled water and in the temperature range from -20 °C to -3 °C. The estimation is based on polarizability ratios of ice particles measured by the MIRA-35 with hybrid polarimetric configuration, manufactured by METEK GmbH. For the study, 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign were used. Polarizability ratios retrieved for cloud layers with cloud-top temperatures of about -5, -8, -15, and -20 °C were 1.6, 0.9, 0.6, and 0.9, respectively. Such values correspond to prolate, quasi-isotropic, oblate, and quasi-isotropic particles, respectively. Data from a free-fall chamber were used for the comparison. A good agreement of detected shapes with well-known shape{temperature dependencies observed in laboratories was found.
|
2 |
Identifying Cloud Droplets Beyond Lidar Attenuation from Vertically Pointing Cloud Radar Observations Using Artificial Neural NetworksSchimmel, Willi 13 January 2023 (has links)
In dieser Arbeit wird der auf maschinellem Lernen basierende Algorithmus zur Erkennung
von unterkühlten Flüssigwasserschichten in Mischphasenwolken (MPCs) jenseits der
Lidarattenuation VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn) vorgestellt.
Beobachtungen von zwei Langzeitmesskampagnen bilden die Datengrundlage. Für
die nördliche Hemisphäre wurden die Daten mittels der mobilen bodengebundenen Fernerkundungsanlage
des Leipziger Instituts für Meteorologie (LIM) in Leipzig (Deutschland,
51.3°N, 12. 4°E) erhoben. Für die südliche Hemisphäre wurde ein 9-monatiger Teil der
dreijährigen Feldkampagne DACAPO-PESO (Dynamics Aerosol Clouds And Precipitation
Observation in the Pristine Environment of the Southern Ocean; Beobachtung von Dynamik,
Aerosol, Wolken und Niederschlag in der unverschmutzten Umgebung des Südozeans)
aus Punta Arenas (Chile, 53.1°S, 70.9°W) verwendet. Dieser Datensatz wurde mittels des
94GHz Wolkenradars des LIM in Kombination mit LACROS (Leipzig Aerosol and Cloud
Remote Observations System; Leipziger Aerosol- und Wolken-Fernerkundungssystem)-
Instrumenten erhoben. Datensätze von vertikal ausgerichteten Doppler-Wolkenradaren
und Lidarsystemen liefern Erkenntnisse über Wolkeneigenschaften mit hoher zeitlicher
und räumlicher Auflösung. Die Identifizierung von flüssigen Wolkentröpfchen ist jedoch
aufgrund der Abschwächung des Lidarsignals oft eingeschränkt. Wolkenradare sind andererseits
in der Lage, mehrere Flüssigwassersschichten zu durchdringen, und können
potenziell eingesetzt werden, um die Identifizierung der thermodynamischen Wolkenphase
auf die gesamte vertikale Säule jenseits der Lidar-Signalabschwächungshöhe auszudehnen.
Dazu werden morphologische Merkmale in Wolkenradar-Doppler-Spektren extrahiert,
um auf das Vorhandensein von Flüssigwasser zu schließen. Das wichtigste Ergebnis dieser
Arbeit ist die Implementierung des Open-Source-Retrievals VOODOO. Für beide
Langzeitdatensätze zeigt die Wolken- und Flüssigwasseridentifikation von VOODOO
hervorragende zeitliche und räumliche Übereinstimmungen mit der weit verbreitenten
Cloudnet-Klassifizierung. Vergleiche des vom Mikrowellenradiometers (MWR) gemessenen
Flüssigwasserpfads (LWP) mit modelliertem adiabatischen LWP zeigen jedoch die
Überlegenheit von VOODOO in der Detektion hochreichender und mehrschichtiger MPCs
im Vergleich zu Cloudnet. Der Einfluss von Turbulenzen auf die Vorhersageleistung von
VOODOO wurde analysiert und als gering eingestuft. Darüber hinaus bestätigen weltraumgestützte
Lidar-Beobachtungen die VOODOO-basierten Vorhersagen von Oberkanten
von Flüssigwasserschichten für ausgewählte Satellitenüberflüge über Punta Arenas. Das
Endresultat zeigt für ein Fallbeispiel die resultierende Reduktion der Fehler zwischen
kurzwelliger solarer Strahlung am Erdboden, sowie des Strahlungseffekts von Wolken
zwischen Beobachtungen und Strahlungstransfersimulationen um den Faktor 2, bei der
Verwendung der VOODOO-Flüssigwasseridentifikationen.:i Mixed-Phase Clouds
1 Introduction 3
2 Remote-sensing of mixed-phase clouds 7
2.1 Definition, occurrence, and impact . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Instrumentation and operating principles . . . . . . . . . . . . . . . . . . . 9
2.2.1 Doppler cloud radar . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Microwave radiometer . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Numerical weather forecast model . . . . . . . . . . . . . . . . . . . 18
2.2.5 Additional data sources . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Datasets 19
3.1 Punta Arenas, Chile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Leipzig, Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ii Methodology
4 Identifying the thermodynamic phase of hydrometeors 25
4.1 Multisensor-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Cloudnet: Illingworth et al., 2007 . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Shupe, 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Radar-moment-based approaches . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Silber et al., 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Kalogeras et al., 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Doppler-Spectrum-based approaches . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Yu et al., 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 PEAKO + peakTree: Kalesse et al., 2019; Radenz et al., 2019 . . . . 28
4.3.3 Luke et al., 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Challenges in cloud-phase classification . . . . . . . . . . . . . . . . . . . . 30
5 Machine learning model 33
5.1 Mathematical basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Training and validation dataset . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.1 Convolution layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.2 Perceptron layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.3 Output layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7.1 Confusion matrix and binary classification metrics . . . . . . . . . 43
5.7.2 Correlation with independent measurements . . . . . . . . . . . . . 45
5.7.3 Influence of LWP and turbulence on the performance . . . . . . . . 45
5.7.4 Probability density functions . . . . . . . . . . . . . . . . . . . . . . 46
5.7.5 Validation via space-borne lidar satellite CALIPSO . . . . . . . . . 46
5.7.6 Radiative closure study . . . . . . . . . . . . . . . . . . . . . . . . . 46
iii Results
6 Results 51
6.1 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Case study: 1. August 2019, Punta Arenas, Chile . . . . . . . . . . . . . . . 53
6.3 Case study: 30 December 2020, Leipzig, Germany . . . . . . . . . . . . . . 57
6.4 Performance analysis for larger data sets . . . . . . . . . . . . . . . . . . . . 60
6.5 Probability density functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.6 Case study for satellite-based cloud phase validation . . . . . . . . . . . . . 66
6.7 Radiative closure study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
iv Outcome
7 Summary and Conclusion 77
8 Outlook 79
Publication record 83
List of Figures 85
List of Tables 88
List of Symbols 93
Bibliography 99 / This work presents a data driven retrieval algorithm for reVealing supercOOled liquiD
beyOnd lidar attenuatiOn (VOODOO) in mixed-phase clouds (MPCs), which is based
on deep convolutional neural networks (CNNs). Observations of two long-term field
campaigns of mobile ground-based remote-sensing instrument deployments from both
hemispheres are utilized. For the northern hemisphere, the data set was obtained by the
mobile ground-based remote-sensing suite of the Leipzig Institute for Meteorology (LIM)
in Leipzig (Germany, 51.3°N, 12.4°E) and for the southern hemisphere, 9-months of the
three-year-long data set of the Dynamics Aerosol Clouds And Precipitation Observation in
the Pristine Environment of the Southern Ocean (DACAPO-PESO) field campaign in Punta
Arenas (Chile, 53.1°S, 70.9°W), collected by the supersite LACROS (Leipzig Aerosol and
Cloud Remote Observations System). Data sets of vertically pointing Doppler cloud radars
and lidars provide insights into cloud properties at high temporal and spatial resolution.
However, the identification of liquid cloud droplets is often limited due to the attenuation
of the lidar signal. On the contrary, cloud radars are able to penetrate multiple liquid
layers and can potentially be used to expand the identification of cloud phase to the entire
vertical column beyond the lidar signal attenuation height, by exploiting morphological
features in cloud radar Doppler spectra that relate to the existence of supercooled liquid.
The most important result of this work is the the open-source implementation of the
VOODOO retrieval, predicting excellent temporal and spatial agreement in cloud-droplet
bearing pixels detected by the widely-used Cloudnet atmospheric target classification.
Comparisons of the liquid water path (LWP) measured by the microwave radiometer
(MWR), with modeled adiabatic LWP show the superiority of VOODOO in detecting
liquid in deep and multilayer MPCs compared to Cloudnet. The influence of turbulence on
VOODOO’s predictive performance was analyzed and found to be minor. Additionally,
space-borne lidar observations confirm liquid cloud top predictions of MPCs tops for
selected satellite overpasses over Punta Arenas, Chile. The final results of this work is the
demonstration of the ability to reduce the shortwave downward radiation bias and the bias
in cloud radiative effect between ground-based pyranometer observations and radiative
transfer simulations by a factor of 2 for a case study. This highlights the fact that from
a measurement perspective, advanced cloud thermodynamic phase retrievals based on
sophisticated remote-sensing observations can be a way to reduce the Southern Ocean
radiation bias.:i Mixed-Phase Clouds
1 Introduction 3
2 Remote-sensing of mixed-phase clouds 7
2.1 Definition, occurrence, and impact . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Instrumentation and operating principles . . . . . . . . . . . . . . . . . . . 9
2.2.1 Doppler cloud radar . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Microwave radiometer . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Numerical weather forecast model . . . . . . . . . . . . . . . . . . . 18
2.2.5 Additional data sources . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 Datasets 19
3.1 Punta Arenas, Chile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Leipzig, Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ii Methodology
4 Identifying the thermodynamic phase of hydrometeors 25
4.1 Multisensor-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Cloudnet: Illingworth et al., 2007 . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Shupe, 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Radar-moment-based approaches . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Silber et al., 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Kalogeras et al., 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Doppler-Spectrum-based approaches . . . . . . . . . . . . . . . . . . . . . . 28
4.3.1 Yu et al., 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 PEAKO + peakTree: Kalesse et al., 2019; Radenz et al., 2019 . . . . 28
4.3.3 Luke et al., 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Challenges in cloud-phase classification . . . . . . . . . . . . . . . . . . . . 30
5 Machine learning model 33
5.1 Mathematical basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Training and validation dataset . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4.1 Convolution layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4.2 Perceptron layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.3 Output layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.6 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7.1 Confusion matrix and binary classification metrics . . . . . . . . . 43
5.7.2 Correlation with independent measurements . . . . . . . . . . . . . 45
5.7.3 Influence of LWP and turbulence on the performance . . . . . . . . 45
5.7.4 Probability density functions . . . . . . . . . . . . . . . . . . . . . . 46
5.7.5 Validation via space-borne lidar satellite CALIPSO . . . . . . . . . 46
5.7.6 Radiative closure study . . . . . . . . . . . . . . . . . . . . . . . . . 46
iii Results
6 Results 51
6.1 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Case study: 1. August 2019, Punta Arenas, Chile . . . . . . . . . . . . . . . 53
6.3 Case study: 30 December 2020, Leipzig, Germany . . . . . . . . . . . . . . 57
6.4 Performance analysis for larger data sets . . . . . . . . . . . . . . . . . . . . 60
6.5 Probability density functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.6 Case study for satellite-based cloud phase validation . . . . . . . . . . . . . 66
6.7 Radiative closure study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
iv Outcome
7 Summary and Conclusion 77
8 Outlook 79
Publication record 83
List of Figures 85
List of Tables 88
List of Symbols 93
Bibliography 99
|
3 |
Shape-temperature relationship of ice crystals in mixed-phase cloudsbased on observations with polarimetric cloud radar: Shape-temperature relationship of ice crystals in mixed-phase cloudsbased on observations with polarimetric cloud radarMyagkov, Alexander 04 January 2017 (has links)
This thesis is devoted to the experimental quantitative characterization of the shape and orientation distribution of ice particles in clouds. The characterization is based on measured and modeled elevation dependencies of the polarimetric parameters differential reflectivity and correlation coefficient. The polarimetric data is obtained using a newly developed 35-GHz cloud radar MIRA-35 with hybrid polarimetric configuration and scanning capabilities. The full procedure chain of the technical implementation and the realization of the setup of the hybrid-mode cloud radar for the shape determination are presented. This includes the description of phase adjustments in the transmitting paths, the introduction of the general data processing scheme, correction of the data for the differences of amplifications and electrical path lengths in the transmitting and receiving channels, the rotation of the polarization basis by 45°, the correction of antenna effects on polarimetric measurements, the determination of spectral polarimetric variables, and the formulation of a scheme to increase the signal-to-noise ratio. Modeling of the polarimetric variables is based on existing backscattering models assuming the spheroidal representation of cloud scatterers. The parameters retrieved from the model are polarizability ratio and degree of orientation, which can be assigned to certain particle orientations and shapes.
In the thesis the first quantitative estimations of ice particle shape at the top of liquid-topped clouds are presented. Analyzed ice particles were formed in the presence of supercooled water and in the temperature range from -20 °C to -3 °C. The estimation is based on polarizability ratios of ice particles measured by the MIRA-35 with hybrid polarimetric configuration, manufactured by METEK GmbH. For the study, 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign were used. Polarizability ratios retrieved for cloud layers with cloud-top temperatures of about -5, -8, -15, and -20 °C were 1.6, 0.9, 0.6, and 0.9, respectively. Such values correspond to prolate, quasi-isotropic, oblate, and quasi-isotropic particles, respectively. Data from a free-fall chamber were used for the comparison. A good agreement of detected shapes with well-known shape{temperature dependencies observed in laboratories was found.:1 Introduction
2 Formation and development of ice particles: Laboratory studies and remote observations
2.1 Heterogeneous ice formation in the atmosphere
2.2 Laboratory investigations of ice crystal development
2.3 Polarimetric radar observations of ice microphysics
2.3.1 Polarimetry in weather radar networks
2.3.2 Polarimetry in cloud radars
2.3.3 Polarization coupling
2.4 Aims and scientific questions
3 Effects of antenna patterns on cloud radar polarimetric measurements
3.1 Measurements of complex antenna patterns
3.1.1 Problem definition
3.1.2 Measurement description
3.1.3 Results of antenna pattern measurements
3.2 Correction of LDR measurements
3.3 Discrimination between insects and clouds
4 Cloud radar MIRA-35 with hybrid mode
4.1 Implementation and phase adjustment
4.2 Processing of the coherency matrix
4.3 Correction of the coherency matrix for differences of channels
4.4 The coherency matrix in the slanted basis
4.5 Correction for the antenna coupling
4.6 Spectral polarimetric variables
4.7 Sensitivity issue
5 Shape and orientation retrieval
5.1 Backscattering model
5.2 Retrieval technique
5.3 Case study
6 Shape-temperature relationship of pristine ice crystals
6.1 Instrumentation and data set
6.2 Examples of the shape retrieval
6.2.1 Case 1: 12 October 2014, 15:00-16:00 UTC
6.2.2 Case 2: 18 October 2014, 01:00-02:00 UTC
6.2.3 Case 3: 20 October 2014, 18:00-19:00 UTC
6.2.4 Case 4: 10 November 2014, 02:00-03:00 UTC
6.2.5 Case 5: 7 November 2014, 20:00-21:00 UTC
6.3 Comparison of shape with laboratory studies
6.4 Orientation of pristine ice crystals
7 Summary and outlook
Bibliography
List of Abbreviations
List of Symbols
|
Page generated in 0.04 seconds