• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assimilation de données de radar à nuages aéroporté pendant la campagne de mesures HyMeX / Assimilation of airbone cloud radar data during the HyMeX Special Observing Period.

Borderies, Mary 07 December 2018 (has links)
Les radars à nuages sont des atouts indéniables pour la Prévision Numérique du Temps (PNT). De par leur petite longueur d’onde, ils possèdent une excellente sensibilité aux particules nuageuses et ils sont facilement déployables à bord de plates-formes mobiles. Cette thèse a permis d’évaluer l’apport des observations de radars à nuages pour la validation et l’initialisation de modèles de PNT à échelle kilométrique. Dans la première partie, un opérateur d’observation pour la réflectivité en bande W a été conçu en cohérence avec le schéma microphysique à un moment d'Arome, le modèle de PNT à échelle kilométrique de Météo-France, mais de façon suffisamment générale pour pouvoir être adapté à un autre modèle de PNT à échelle kilométrique. Il est adaptable pour des radars à visée verticale aéroportés ou au sol. Afin de dissocier les erreurs de positionnement des nuages prévus par Arome, de celles présentes dans l’opérateur d’observation, une nouvelle méthode de validation, appelée "la méthode de la colonne la plus ressemblante (CPR), a été élaborée. Cette méthode a été employée afin de valider et de calibrer l'opérateur d'observation en utilisant les profils de réflectivité collectés par le radar à nuages aéroporté Rasta dans des conditions variées durant la première période d’observations (SOP1) du programme international HyMeX, qui vise à améliorer notre compréhension du cycle de l'eau en méditerranée. La seconde partie s'est intéressée à l'apport respectif de l'assimilation de profils verticaux de réflectivité et de vents horizontaux mesurés par le radar à nuages Rasta dans le système d'assimilation variationnel tridimensionnel (3DVar) d'Arome. Le bénéfice apporté par des conditions thermodynamiques, via l'assimilation de la réflectivité en bande W, et dynamiques, via l'assimilation des profils de vents horizontaux, cohérentes dans l'état initial a également été étudié. Pour assimiler la réflectivité en bande W, la méthode d'assimilation "1D+3DVar", qui est opérationnelle dans Arome pour assimiler les réflectivités des radars de précipitation au sol, a été employée. La méthode de restitution bayésienne 1D de profils d'humidité a été validée avec des mesures d'humidité in situ indépendantes. Puis, les expériences d'assimilation ont été menées sur un événement fortement convectif, ainsi que sur une plus longue période de 45 jours. Les résultats suggèrent notamment que l'assimilation conjointe des profils de réflectivité en bande W et des profils verticaux de vents horizontaux permet d'améliorer les analyses d'humidité, mais suggèrent également une légère amélioration des prévisions des cumuls de précipitation / Cloud radars are an undeniable assets for Numerical Weather Prediction (NWP) models. Because of their very short wavelength, they are extremely sensitive to cloud microphysical properties and are easily deployable aboard moving platforms such as aircraft or spacecraft. This PhD has explored the potential of cloud radar data for the validation and initialisation of kilometre-scale NWP models. In the first part of the PhD, a W-band reflectivity forward operator was designed. It is consistent with the one-moment microphysical scheme used in the Météo-France kilometre-scale NWP model AROME, but in a sufficiently general way that it could be adapted to other kilometrescale NWP models. It was designed in particular for airborne or ground-based vertically pointing cloud radars. To disentangle spatial location errors in the model from errors in the forward operator, a neighbourhood validation method, called the “Most Resembling Method” (MRC), was designed. This validation method was used to validate and calibrate the forward operator using the data collected by the airborne cloud radar RASTA in diverse conditions during the first Special Observation Period (SOP1) of the HyMeX international program, which aims to improve our understanding of the Mediterranean water cycle. The second part focused on the respective roles of the assimilation of reflectivity and horizontal wind profiles, measured by the cloud radar RASTA, in the three dimensional variational (3DVar) assimilation system of AROME. The benefit brought by consistent thermodynamic conditions in the initial state, through the assimilation of the W-band reflectivity, and dynamic ones, through the assimilation of horizontal wind profiles, was also investigated.To assimilate the W-band reflectivity, the two-step assimilation method “1D+3DVar”, operationally employed in AROME to assimilate ground-based precipitation radar data, was used. The efficiency of the 1D Bayesian method in retrieving humidity fields is assessed using independent in-flight humidity measurements. The assimilation experiments were performed for a heavy convective event, as well as over a longer period of 45 days. In particular, the results indicate that the joint assimilation of W-band reflectivity and horizontal wind profiles suggest an improvement of moisture analyses, along with a slight improvement of the rainfall precipitation forecasts.
2

An Investigation of Adaptive Remote Sensing Methods for Spaceborne Cloud Profiling Radars

DeLong, Jakob Alexander 08 September 2022 (has links)
No description available.
3

Shape-temperature relationship of ice crystals in mixed-phase clouds based on observations with polarimetric cloud radar / Zusammenhang zwischen Umgebungstemperatur und der Form von Eiskristallen in Mischphasenwolken auf Basis von Beobachtungen mit einem polarimetrischen Wolkenradar

Myagkov, Alexander 04 January 2017 (has links) (PDF)
This thesis is devoted to the experimental quantitative characterization of the shape and orientation distribution of ice particles in clouds. The characterization is based on measured and modeled elevation dependencies of the polarimetric parameters differential reflectivity and correlation coefficient. The polarimetric data is obtained using a newly developed 35-GHz cloud radar MIRA-35 with hybrid polarimetric configuration and scanning capabilities. The full procedure chain of the technical implementation and the realization of the setup of the hybrid-mode cloud radar for the shape determination are presented. This includes the description of phase adjustments in the transmitting paths, the introduction of the general data processing scheme, correction of the data for the differences of amplifications and electrical path lengths in the transmitting and receiving channels, the rotation of the polarization basis by 45°, the correction of antenna effects on polarimetric measurements, the determination of spectral polarimetric variables, and the formulation of a scheme to increase the signal-to-noise ratio. Modeling of the polarimetric variables is based on existing backscattering models assuming the spheroidal representation of cloud scatterers. The parameters retrieved from the model are polarizability ratio and degree of orientation, which can be assigned to certain particle orientations and shapes. In the thesis the first quantitative estimations of ice particle shape at the top of liquid-topped clouds are presented. Analyzed ice particles were formed in the presence of supercooled water and in the temperature range from -20 °C to -3 °C. The estimation is based on polarizability ratios of ice particles measured by the MIRA-35 with hybrid polarimetric configuration, manufactured by METEK GmbH. For the study, 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign were used. Polarizability ratios retrieved for cloud layers with cloud-top temperatures of about -5, -8, -15, and -20 °C were 1.6, 0.9, 0.6, and 0.9, respectively. Such values correspond to prolate, quasi-isotropic, oblate, and quasi-isotropic particles, respectively. Data from a free-fall chamber were used for the comparison. A good agreement of detected shapes with well-known shape{temperature dependencies observed in laboratories was found.
4

Description of physical processes driving the life cycle of radiation fog and fog–stratus transitions based on conceptual models / Description des processus physiques pilotant le cycle de vie de brouillards radiatifs et des transitions brouillard–stratus basé de modèles conceptuels

Wærsted, Eivind 12 October 2018 (has links)
Le brouillard cause des dangers pour le trafic par la réduction de visibilité. L’amélioration des prévisions du brouillard est donc un objectif scientifique. Cette thèse analyse le cycle de vie des brouillards continentaux autour de Paris, observés par télédétection au sol à l’observatoire atmosphérique SIRTA. La thèse se focalise sur la compréhension des processus en jeu dans la dissipation après le lever du soleil, sous l’hypothèse d’une couche de brouillard adiabatique. Pendant 4 ans, plus de 100 événement de brouillard sont documentés par l’observation de la base du nuage (par télémètre), son sommet et la présence de nuages au-dessus (radar nuage), et le contenu intégré d’eau liquide (LWP) (radiomètre micro-onde (MWR)). La plupart des brouillards se dissipe suite à un soulèvement de la base, sans que tout le nuage s’évapore, et souvent sans une réduction du LWP. Donc, non seulement est la réduction du LWP importante pour la dissipation du brouillard, mais aussi l’évolution de son sommet, qui avec le LWP détermine l’altitude de la base. Des simulations par le modèle LES DALES montrent une sensibilité importante à la stratification au-dessus : en augmentant l’entrainement, une stratification faible au sommet peut accélérer la dissipation par (1) plus de perte d’eau liquide par l’entrainement de l’air non-saturé, et (2) par un développement vertical menant au lever de la base. La variabilité de cette stratification peut être raisonnablement bien observée par le profil de température du MWR. Avant la dissipation du brouillard par lever de la base, le radar observe souvent un max de réflectivité près du sommet, ce qui peut être lié à l’absence de grandes gouttelettes dans les basses couches. Donc, par leur observation du développement du sommet, le LWP, la stratification, et le profil de réflectivité, le radar et le MWR donnent des informations qui peuvent potentiellement anticiper la dissipation du brouillard.Les processus radiatifs sont étudiés avec le code de transfert radiatif ARTDECO. Le refroidissement radiatif au sommet du brouillard peut produire 40–70 g m-2 h-1 d’LWP quand le brouillard est opaque (LWP >= 30 g m-2) (c’est moins pour les brouillards minces) et il n’y a pas de nuage au-dessus. C’est la source principale d’LWP et il peut renouveler le LWP du brouillard en 0.5–2 h. Sa variabilité s’explique principalement par la température du brouillard et le profil d’humidité au-dessus. Les nuages au-dessus du brouillard réduisent fortement la production, en particulier les nuages bas. La perte d’LWP par absorption de rayonnement solaire par le brouillard est 5–15 g m-2 h-1 autour de midi en hiver, dépendant de l’épaisseur du brouillard, mais ça peut augmenter par 100 % quand une quantité importante d’aérosols absorbants est présente (AOD=0.15, SSA=0.82).Nos résultats par simulation LES indiquent que le réchauffement par absorption de rayonnement solaire à la surface est le premier processus de perte d’LWP après le lever du soleil, mais sa magnitude est sensible au rapport de Bowen. Vu son importance, une amélioration de l’observation du rapport de Bowen dans le brouillard devrait être une priorité, car les observations actuelles des flux turbulents ne sont pas suffisamment précises pour quantifier le rapport de Bowen.Un modèle conceptuel pour calculer le bilan du LWP directement à partir des observations est développé. En utilisant 12 paramètres observés et 2 qui viennent d’une réanalyse, il calcule les impacts au LWP par rayonnement, flux de chaleur à la surface, entrainement, subsidence et dépôt. Ce modèle est appliqué à 45 brouillards observés qui se dissipent après le lever du soleil. Une variabilité importante dans le rayonnement, l’entrainement et la subsidence entre les cas est trouvée, qui peut en partie expliquer les différences en heure de dissipation. Tandis que les termes de rayonnement sont plutôt précis, des autres ont des incertitudes importantes et pourront être améliorés dans le futur. / Fog causes hazards to human activity due to the reduction of visibility, especially through the risk of traffic accidents. Improving the forecasts of fog formation and dissipation is therefore an objective for research. This thesis analyses the life cycle of continental fog events occurring in the Paris area, using several ground-based remote sensing instruments deployed at the SIRTA atmospheric observatory. We focus on understanding the dissipation after sunrise and the local processes involved, assuming the fog layer is adiabatic (well-mixed). Over a 4-year period, more than 100 fog events are documented by observing cloud base (ceilometer), cloud top and clouds appearing above the fog (cloud radar), and the liquid water path (LWP) (microwave radiometer (MWR)). Most fog events dissipate by lifting of the base without a complete evaporation of the cloud, and often even without a reduction in LWP. This indicates that not only a reduction in LWP is important for fog dissipation, but also the evolution of the fog top, which together with the LWP determines whether the cloud extends down to the ground. Using the LES model DALES, we find a strong sensitivity of the vertical development of the fog top to the stratification above. By enhancing entrainment, a weak stratification at fog top can lead to earlier fog dissipation by (1) more depletion of LWP by entraining unsaturated air, especially if the air is dry, and (2) vertical development of the fog top leading to lifting of the fog base. The variability of this stratification can be observed reasonably well with the MWR temperature profile. In several cases of dissipation by lifting, the vertical profile of radar reflectivity in the fog has a max value near fog top prior to dissipation, which suggests a lack of bigger droplets in the lower levels of the fog. By observing the cloud top development, the stratification, the LWP and the profile of reflectivity, the radar and MWR provide information that has potential for anticipating fog dissipation by lifting.Radiative processes are studied using the comprehensive radiative transfer code ARTDECO. The radiative cooling at fog top can produce 40–70 g m-2 h-1 of LWP when the fog is opaque (LWP >= 30 g m-2) (production is lower for thin fog) and there are no clouds above. This cooling thus is the main process of LWP production and can renew the fog LWP in 0.5–2 h. Its variability is mainly explained by the fog temperature and the humidity profile above. Clouds above the fog will strongly reduce this production, especially low clouds: a cloud with optical depth 4 can reduce it by 30 (100) % at 10 (2) km. Loss of LWP by absorption of solar radiation by the fog is 5–15 g m-2 h-1 around midday in winter, depending on cloud thickness, but it can be enhanced by 100 % in case of important amounts of absorbing aerosols (dry AOD=0.15, SSA=0.82).Heating due to solar radiation absorbed at the surface is found to be the dominating process of LWP loss after sunrise (according to LES model simulations), but its magnitude is sensitive to the Bowen ratio. However, observations of the turbulent heat fluxes during fog are not precise enough to quantify the Bowen ratio. The importance of the Bowen ratio means that improvements of its measurement during fog should be a priority.A conceptual model which calculates the LWP budget of fog directly from observations is developed. Using 12 observed parameters and 2 from reanalysis data, it calculates the impact on LWP of terrestrial and solar radiation, surface heat fluxes, entrainment, subsidence and deposition. It is applied to 45 observed fog events dissipating after sunrise. An important variability in radiation, entrainment and subsidence between the cases is found, which can partly explain the different dissipation times. While the terms of radiation are rather robust, several other terms suffer from significant uncertainties, leaving room for improvements in the future.
5

Identifying Cloud Droplets Beyond Lidar Attenuation from Vertically Pointing Cloud Radar Observations Using Artificial Neural Networks

Schimmel, Willi 13 January 2023 (has links)
In dieser Arbeit wird der auf maschinellem Lernen basierende Algorithmus zur Erkennung von unterkühlten Flüssigwasserschichten in Mischphasenwolken (MPCs) jenseits der Lidarattenuation VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn) vorgestellt. Beobachtungen von zwei Langzeitmesskampagnen bilden die Datengrundlage. Für die nördliche Hemisphäre wurden die Daten mittels der mobilen bodengebundenen Fernerkundungsanlage des Leipziger Instituts für Meteorologie (LIM) in Leipzig (Deutschland, 51.3°N, 12. 4°E) erhoben. Für die südliche Hemisphäre wurde ein 9-monatiger Teil der dreijährigen Feldkampagne DACAPO-PESO (Dynamics Aerosol Clouds And Precipitation Observation in the Pristine Environment of the Southern Ocean; Beobachtung von Dynamik, Aerosol, Wolken und Niederschlag in der unverschmutzten Umgebung des Südozeans) aus Punta Arenas (Chile, 53.1°S, 70.9°W) verwendet. Dieser Datensatz wurde mittels des 94GHz Wolkenradars des LIM in Kombination mit LACROS (Leipzig Aerosol and Cloud Remote Observations System; Leipziger Aerosol- und Wolken-Fernerkundungssystem)- Instrumenten erhoben. Datensätze von vertikal ausgerichteten Doppler-Wolkenradaren und Lidarsystemen liefern Erkenntnisse über Wolkeneigenschaften mit hoher zeitlicher und räumlicher Auflösung. Die Identifizierung von flüssigen Wolkentröpfchen ist jedoch aufgrund der Abschwächung des Lidarsignals oft eingeschränkt. Wolkenradare sind andererseits in der Lage, mehrere Flüssigwassersschichten zu durchdringen, und können potenziell eingesetzt werden, um die Identifizierung der thermodynamischen Wolkenphase auf die gesamte vertikale Säule jenseits der Lidar-Signalabschwächungshöhe auszudehnen. Dazu werden morphologische Merkmale in Wolkenradar-Doppler-Spektren extrahiert, um auf das Vorhandensein von Flüssigwasser zu schließen. Das wichtigste Ergebnis dieser Arbeit ist die Implementierung des Open-Source-Retrievals VOODOO. Für beide Langzeitdatensätze zeigt die Wolken- und Flüssigwasseridentifikation von VOODOO hervorragende zeitliche und räumliche Übereinstimmungen mit der weit verbreitenten Cloudnet-Klassifizierung. Vergleiche des vom Mikrowellenradiometers (MWR) gemessenen Flüssigwasserpfads (LWP) mit modelliertem adiabatischen LWP zeigen jedoch die Überlegenheit von VOODOO in der Detektion hochreichender und mehrschichtiger MPCs im Vergleich zu Cloudnet. Der Einfluss von Turbulenzen auf die Vorhersageleistung von VOODOO wurde analysiert und als gering eingestuft. Darüber hinaus bestätigen weltraumgestützte Lidar-Beobachtungen die VOODOO-basierten Vorhersagen von Oberkanten von Flüssigwasserschichten für ausgewählte Satellitenüberflüge über Punta Arenas. Das Endresultat zeigt für ein Fallbeispiel die resultierende Reduktion der Fehler zwischen kurzwelliger solarer Strahlung am Erdboden, sowie des Strahlungseffekts von Wolken zwischen Beobachtungen und Strahlungstransfersimulationen um den Faktor 2, bei der Verwendung der VOODOO-Flüssigwasseridentifikationen.:i Mixed-Phase Clouds 1 Introduction 3 2 Remote-sensing of mixed-phase clouds 7 2.1 Definition, occurrence, and impact . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Instrumentation and operating principles . . . . . . . . . . . . . . . . . . . 9 2.2.1 Doppler cloud radar . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Microwave radiometer . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.4 Numerical weather forecast model . . . . . . . . . . . . . . . . . . . 18 2.2.5 Additional data sources . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Datasets 19 3.1 Punta Arenas, Chile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Leipzig, Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ii Methodology 4 Identifying the thermodynamic phase of hydrometeors 25 4.1 Multisensor-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.1 Cloudnet: Illingworth et al., 2007 . . . . . . . . . . . . . . . . . . . . 25 4.1.2 Shupe, 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Radar-moment-based approaches . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 Silber et al., 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.2 Kalogeras et al., 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 Doppler-Spectrum-based approaches . . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 Yu et al., 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.2 PEAKO + peakTree: Kalesse et al., 2019; Radenz et al., 2019 . . . . 28 4.3.3 Luke et al., 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4 Challenges in cloud-phase classification . . . . . . . . . . . . . . . . . . . . 30 5 Machine learning model 33 5.1 Mathematical basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3 Training and validation dataset . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.4.1 Convolution layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.4.2 Perceptron layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.4.3 Output layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.5 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.6 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.7.1 Confusion matrix and binary classification metrics . . . . . . . . . 43 5.7.2 Correlation with independent measurements . . . . . . . . . . . . . 45 5.7.3 Influence of LWP and turbulence on the performance . . . . . . . . 45 5.7.4 Probability density functions . . . . . . . . . . . . . . . . . . . . . . 46 5.7.5 Validation via space-borne lidar satellite CALIPSO . . . . . . . . . 46 5.7.6 Radiative closure study . . . . . . . . . . . . . . . . . . . . . . . . . 46 iii Results 6 Results 51 6.1 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 Case study: 1. August 2019, Punta Arenas, Chile . . . . . . . . . . . . . . . 53 6.3 Case study: 30 December 2020, Leipzig, Germany . . . . . . . . . . . . . . 57 6.4 Performance analysis for larger data sets . . . . . . . . . . . . . . . . . . . . 60 6.5 Probability density functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.6 Case study for satellite-based cloud phase validation . . . . . . . . . . . . . 66 6.7 Radiative closure study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 iv Outcome 7 Summary and Conclusion 77 8 Outlook 79 Publication record 83 List of Figures 85 List of Tables 88 List of Symbols 93 Bibliography 99 / This work presents a data driven retrieval algorithm for reVealing supercOOled liquiD beyOnd lidar attenuatiOn (VOODOO) in mixed-phase clouds (MPCs), which is based on deep convolutional neural networks (CNNs). Observations of two long-term field campaigns of mobile ground-based remote-sensing instrument deployments from both hemispheres are utilized. For the northern hemisphere, the data set was obtained by the mobile ground-based remote-sensing suite of the Leipzig Institute for Meteorology (LIM) in Leipzig (Germany, 51.3°N, 12.4°E) and for the southern hemisphere, 9-months of the three-year-long data set of the Dynamics Aerosol Clouds And Precipitation Observation in the Pristine Environment of the Southern Ocean (DACAPO-PESO) field campaign in Punta Arenas (Chile, 53.1°S, 70.9°W), collected by the supersite LACROS (Leipzig Aerosol and Cloud Remote Observations System). Data sets of vertically pointing Doppler cloud radars and lidars provide insights into cloud properties at high temporal and spatial resolution. However, the identification of liquid cloud droplets is often limited due to the attenuation of the lidar signal. On the contrary, cloud radars are able to penetrate multiple liquid layers and can potentially be used to expand the identification of cloud phase to the entire vertical column beyond the lidar signal attenuation height, by exploiting morphological features in cloud radar Doppler spectra that relate to the existence of supercooled liquid. The most important result of this work is the the open-source implementation of the VOODOO retrieval, predicting excellent temporal and spatial agreement in cloud-droplet bearing pixels detected by the widely-used Cloudnet atmospheric target classification. Comparisons of the liquid water path (LWP) measured by the microwave radiometer (MWR), with modeled adiabatic LWP show the superiority of VOODOO in detecting liquid in deep and multilayer MPCs compared to Cloudnet. The influence of turbulence on VOODOO’s predictive performance was analyzed and found to be minor. Additionally, space-borne lidar observations confirm liquid cloud top predictions of MPCs tops for selected satellite overpasses over Punta Arenas, Chile. The final results of this work is the demonstration of the ability to reduce the shortwave downward radiation bias and the bias in cloud radiative effect between ground-based pyranometer observations and radiative transfer simulations by a factor of 2 for a case study. This highlights the fact that from a measurement perspective, advanced cloud thermodynamic phase retrievals based on sophisticated remote-sensing observations can be a way to reduce the Southern Ocean radiation bias.:i Mixed-Phase Clouds 1 Introduction 3 2 Remote-sensing of mixed-phase clouds 7 2.1 Definition, occurrence, and impact . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Instrumentation and operating principles . . . . . . . . . . . . . . . . . . . 9 2.2.1 Doppler cloud radar . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Lidar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Microwave radiometer . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.4 Numerical weather forecast model . . . . . . . . . . . . . . . . . . . 18 2.2.5 Additional data sources . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Datasets 19 3.1 Punta Arenas, Chile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Leipzig, Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ii Methodology 4 Identifying the thermodynamic phase of hydrometeors 25 4.1 Multisensor-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.1 Cloudnet: Illingworth et al., 2007 . . . . . . . . . . . . . . . . . . . . 25 4.1.2 Shupe, 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Radar-moment-based approaches . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 Silber et al., 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.2 Kalogeras et al., 2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 Doppler-Spectrum-based approaches . . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 Yu et al., 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3.2 PEAKO + peakTree: Kalesse et al., 2019; Radenz et al., 2019 . . . . 28 4.3.3 Luke et al., 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4 Challenges in cloud-phase classification . . . . . . . . . . . . . . . . . . . . 30 5 Machine learning model 33 5.1 Mathematical basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3 Training and validation dataset . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.4.1 Convolution layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.4.2 Perceptron layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.4.3 Output layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.5 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.6 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.7.1 Confusion matrix and binary classification metrics . . . . . . . . . 43 5.7.2 Correlation with independent measurements . . . . . . . . . . . . . 45 5.7.3 Influence of LWP and turbulence on the performance . . . . . . . . 45 5.7.4 Probability density functions . . . . . . . . . . . . . . . . . . . . . . 46 5.7.5 Validation via space-borne lidar satellite CALIPSO . . . . . . . . . 46 5.7.6 Radiative closure study . . . . . . . . . . . . . . . . . . . . . . . . . 46 iii Results 6 Results 51 6.1 Training results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.2 Case study: 1. August 2019, Punta Arenas, Chile . . . . . . . . . . . . . . . 53 6.3 Case study: 30 December 2020, Leipzig, Germany . . . . . . . . . . . . . . 57 6.4 Performance analysis for larger data sets . . . . . . . . . . . . . . . . . . . . 60 6.5 Probability density functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.6 Case study for satellite-based cloud phase validation . . . . . . . . . . . . . 66 6.7 Radiative closure study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 iv Outcome 7 Summary and Conclusion 77 8 Outlook 79 Publication record 83 List of Figures 85 List of Tables 88 List of Symbols 93 Bibliography 99
6

Shape-temperature relationship of ice crystals in mixed-phase cloudsbased on observations with polarimetric cloud radar: Shape-temperature relationship of ice crystals in mixed-phase cloudsbased on observations with polarimetric cloud radar

Myagkov, Alexander 04 January 2017 (has links)
This thesis is devoted to the experimental quantitative characterization of the shape and orientation distribution of ice particles in clouds. The characterization is based on measured and modeled elevation dependencies of the polarimetric parameters differential reflectivity and correlation coefficient. The polarimetric data is obtained using a newly developed 35-GHz cloud radar MIRA-35 with hybrid polarimetric configuration and scanning capabilities. The full procedure chain of the technical implementation and the realization of the setup of the hybrid-mode cloud radar for the shape determination are presented. This includes the description of phase adjustments in the transmitting paths, the introduction of the general data processing scheme, correction of the data for the differences of amplifications and electrical path lengths in the transmitting and receiving channels, the rotation of the polarization basis by 45°, the correction of antenna effects on polarimetric measurements, the determination of spectral polarimetric variables, and the formulation of a scheme to increase the signal-to-noise ratio. Modeling of the polarimetric variables is based on existing backscattering models assuming the spheroidal representation of cloud scatterers. The parameters retrieved from the model are polarizability ratio and degree of orientation, which can be assigned to certain particle orientations and shapes. In the thesis the first quantitative estimations of ice particle shape at the top of liquid-topped clouds are presented. Analyzed ice particles were formed in the presence of supercooled water and in the temperature range from -20 °C to -3 °C. The estimation is based on polarizability ratios of ice particles measured by the MIRA-35 with hybrid polarimetric configuration, manufactured by METEK GmbH. For the study, 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign were used. Polarizability ratios retrieved for cloud layers with cloud-top temperatures of about -5, -8, -15, and -20 °C were 1.6, 0.9, 0.6, and 0.9, respectively. Such values correspond to prolate, quasi-isotropic, oblate, and quasi-isotropic particles, respectively. Data from a free-fall chamber were used for the comparison. A good agreement of detected shapes with well-known shape{temperature dependencies observed in laboratories was found.:1 Introduction 2 Formation and development of ice particles: Laboratory studies and remote observations 2.1 Heterogeneous ice formation in the atmosphere 2.2 Laboratory investigations of ice crystal development 2.3 Polarimetric radar observations of ice microphysics 2.3.1 Polarimetry in weather radar networks 2.3.2 Polarimetry in cloud radars 2.3.3 Polarization coupling 2.4 Aims and scientific questions 3 Effects of antenna patterns on cloud radar polarimetric measurements 3.1 Measurements of complex antenna patterns 3.1.1 Problem definition 3.1.2 Measurement description 3.1.3 Results of antenna pattern measurements 3.2 Correction of LDR measurements 3.3 Discrimination between insects and clouds 4 Cloud radar MIRA-35 with hybrid mode 4.1 Implementation and phase adjustment 4.2 Processing of the coherency matrix 4.3 Correction of the coherency matrix for differences of channels 4.4 The coherency matrix in the slanted basis 4.5 Correction for the antenna coupling 4.6 Spectral polarimetric variables 4.7 Sensitivity issue 5 Shape and orientation retrieval 5.1 Backscattering model 5.2 Retrieval technique 5.3 Case study 6 Shape-temperature relationship of pristine ice crystals 6.1 Instrumentation and data set 6.2 Examples of the shape retrieval 6.2.1 Case 1: 12 October 2014, 15:00-16:00 UTC 6.2.2 Case 2: 18 October 2014, 01:00-02:00 UTC 6.2.3 Case 3: 20 October 2014, 18:00-19:00 UTC 6.2.4 Case 4: 10 November 2014, 02:00-03:00 UTC 6.2.5 Case 5: 7 November 2014, 20:00-21:00 UTC 6.3 Comparison of shape with laboratory studies 6.4 Orientation of pristine ice crystals 7 Summary and outlook Bibliography List of Abbreviations List of Symbols

Page generated in 0.0814 seconds