1 |
MODEL ATMOSPHERES FOR X-RAY BURSTING NEUTRON STARSMedin, Zach, Steinkirch, Marina von, Calder, Alan C., Fontes, Christopher J., Fryer, Chris L., Hungerford, Aimee L. 21 November 2016 (has links)
The hydrogen and helium accreted by X-ray bursting neutron stars is periodically consumed in runaway thermonuclear reactions that cause the entire surface to glow brightly in X-rays for a few seconds. With models of the emission, the mass and radius of the neutron star can be inferred from the observations. By simultaneously probing neutron star masses and radii, X-ray bursts (XRBs) are one of the strongest diagnostics of the nature of matter at extremely high densities. Accurate determinations of these parameters are difficult, however, due to the highly non-ideal nature of the atmospheres where XRBs occur. Observations from X-ray telescopes such as RXTE and NuStar can potentially place strong constraints on nuclear matter once uncertainties in atmosphere models have been reduced. Here we discuss current progress on modeling atmospheres of X-ray bursting neutron stars and some of the challenges still to be overcome.
|
2 |
A physical model for the variability properties of X-ray binariesIngram, Adam Russell January 2012 (has links)
Emission from X-ray binaries is variable on a wide range of timescales. On long timescales, changes in mass accretion rate drive changes in spectral state. There is also rapid variability, the power spectrum of which consists of a low frequency quasi-periodic oscillation (QPO) superimposed on a broad band noise continuum. Here I investigate a model intended to quantitatively explain the observed spectral and variability properties. I consider a truncated disc geometry whereby the inner regions of an optically thick, geometrically thin accretion disc evaporate to form an optically thin, large scale height accretion flow. The QPO is driven by Lense-Thirring precession of the entire hot flow and the broad band noise is due to fluctuations in mass accretion rate which propagate towards the central object. Mass conservation ties these two processes together, enabling me to define a model for the QPO and broad band noise which uses only one set of parameters. I am thus able fit the model to data. The accretion rate fluctuations drive fluctuations in the precession frequency, giving rise to a quasi-periodic oscillation rather than a pure periodicity. The model thus predicts recent observations which show the QPO frequency to correlate with flux on short timescales. I then investigate a more unique model prediction. As the flow precesses, the patch of the disc preferentially illuminated by the flow rotates such that a non face on observer sees a quasi-periodic shift between blue and red shift in the iron K alpha line. An observation of such an effect would constitute excellent evidence for the model.
|
3 |
Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31Yukita, M., Ptak, A., Hornschemeier, A. E., Wik, D., Maccarone, T. J., Pottschmidt, K., Zezas, A., Antoniou, V., Ballhausen, R., Lehmer, B. D., Lien, A., Williams, B., Baganoff, F., Boyd, P. T., Enoto, T., Kennea, J., Page, K. L., Choi, Y. 22 March 2017 (has links)
We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-sky Hard X-ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E < 10 keV observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT similar to 0.2 keV) plus a hard spectrum with a power law of Gamma similar to 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST images exclude high-mass (> 3 M-circle dot) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (< 3 M-circle dot) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
|
4 |
RISING FROM THE ASHES: MID-INFRARED RE-BRIGHTENING OF THE IMPOSTOR SN 2010da IN NGC 300Lau, Ryan M., Kasliwal, Mansi M., Bond, Howard E., Smith, Nathan, Fox, Ori D., Carlon, Robert, Cody, Ann Marie, Contreras, Carlos, Dykhoff, Devin, Gehrz, Robert, Hsiao, Eric, Jencson, Jacob, Khan, Rubab, Masci, Frank, Monard, L. A. G., Monson, Andrew J., Morrell, Nidia, Phillips, Mark, Ressler, Michael E. 18 October 2016 (has links)
We present multi-epoch mid-infrared (IR) photometry and the optical discovery observations of the "impostor" supernova (SN) 2010da in NGC. 300 using new and archival Spitzer Space Telescope images and ground-based observatories. The mid-infrared counterpart of SN. 2010da was detected as Spitzer Infrared Intensive Transient Survey (SPIRITS). 14bme in the SPIRITS, an ongoing systematic search for IR transients. Before erupting on 2010 May 24, the SN. 2010da progenitor exhibited a constant mid-IR flux at 3.6 and only a slight similar to 10% decrease at 4.5 mu m between 2003 November and 2007 December. A sharp increase in the 3.6 mu m flux followed by a rapid decrease measured similar to 150 days before and similar to 80 days after the initial outburst, respectively, reveal a mid-IR counterpart to the coincident optical and high luminosity X-ray outbursts. At late times, after the outburst (similar to 2000 days), the 3.6 and 4.5 mu m emission increased to over a factor of two. times the progenitor flux and is currently observed (as of 2016 Feb) to be fading, but still above the progenitor flux. We attribute the re-brightening mid-IR emission to continued dust production and increasing luminosity of the surviving system associated with SN. 2010da. We analyze the evolution of the dust temperature (T-d similar to 700-1000 K), mass (Md similar to 0.5-3.8 x. 10(-7) M circle dot), luminosity (L-IR similar to 1.3-3.5 x 10(4) L circle dot), and the equilibrium temperature radius (R-eq similar to 6.4-12.2 au) in order to resolve the nature of SN. 2010da. We address the leading interpretation of SN. 2010da as an eruption from a luminous blue variable high-mass X-ray binary (HMXB) system. We propose that SN. 2010da is instead a supergiant (sg)B[e]-HMXB based on similar luminosities and dust masses exhibited by two other known sgB[e]-HMXB systems. Additionally, the SN. 2010da progenitor occupies a similar region on a mid-IR color-magnitude diagram (CMD) with known sgB[e] stars in the Large Magellanic Cloud. The lower limit estimated for the orbital eccentricity of the sgB[e]-HMXB (e > 0.82) from X-ray luminosity measurements is high compared to known sgHMXBs and supports the claim that SN. 2010da may be associated with a newly formed HMXB system.
|
5 |
An Excess of Low-mass X-Ray Binaries in the Outer Halo of NGC 4472van Haaften, Lennart M., Maccarone, Thomas J., Sell, Paul H., Mihos, J. Christopher, Sand, David J., Kundu, Arunav, Zepf, Stephen E. 17 January 2018 (has links)
We present new Chandra observations of the outer halo of the giant elliptical galaxy NGC 4472 (M49) in the Virgo Cluster. The data extend to 130 kpc (28'), and have a combined exposure time of 150 ks. After identifying optical counterparts using the Next Generation Virgo Cluster Survey to remove background active galactic nuclei and globular cluster (GC) sources, and correcting for completeness, we find that the number of field low-mass X-ray binaries (LMXBs) per unit stellar V-band light increases significantly with the galactocentric radius. Because the flux limit of the complete sample corresponds to the Eddington limit for neutron stars in NGC 4472, many of the similar to 90 field LMXBs in this sample could host black holes. The excess of field LMXBs at large galactocentric radii may be partially caused by natal kicks on black holes and neutron stars in binary systems in the inner part of the galaxy. Furthermore, because the metallicity in the halo of NGC 4472 strongly decreases toward larger galactocentric radii, the number of field LMXBs per unit stellar mass is anticorrelated with metallicity, opposite to what is observed in GCs. Another way to explain the spatial distribution of field LMXBs is therefore a reversed metallicity effect, although we have not identified a mechanism to explain this in terms of stellar and binary evolution.
|
6 |
Monte Carlo/Fokker-Planck simulations of Accretion Phenomena and Optical Spectra of BL Lacertae ObjectsFinke, Justin David 25 September 2007 (has links)
No description available.
|
7 |
Multiwavelength Study of the Black Hole X-ray Binary MAXI J1820+070 in the Rebrightening Phase / 多波長観測で探る再増光期におけるブラックホールX線連星 MAXI J1820+070の研究Yoshitake, Tomohiro 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第25120号 / 理博第5027号 / 新制||理||1717(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 上田 佳宏, 准教授 野上 大作, 教授 前田 啓一 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
|
8 |
An X-Ray Study of Two B+B Binaries: AH Cep and CW CepIgnace, Richard, Hole, K. T., Oskinova, Lidia M., Rotter, J. P. 20 November 2017 (has links)
AH Cep and CW Cep are both early B-type binaries with short orbital periods of 1.8 days and 2.7 days, respectively. All four components are B0.5V types. The binaries are also double-lined spectroscopic and eclipsing. Consequently, solutions for orbital and stellar parameters make the pair of binaries ideal targets for a study of the colliding winds between two B stars. Chandra ACIS-I observations were obtained to determine X-ray luminosities. AH Cep was detected with an unabsorbed X-ray luminosity at a 90% confidence interval of erg s−1, or , relative to the combined Bolometric luminosities of the two components. While formally consistent with expectations for embedded wind shocks, or binary wind collision, the near-twin system of CW Cep was a surprising nondetection. For CW Cep, an upper limit was determined with , again for the combined components. One difference between these two systems is that AH Cep is part of a multiple system. The X-rays from AH Cep may not arise from standard wind shocks nor wind collision, but perhaps instead from magnetism in any one of the four components of the system. The possibility could be tested by searching for cyclic X-ray variability in AH Cep on the short orbital period of the inner B stars.
|
9 |
A la lumière des trous noirs - Disques d'accrétion, couronnes et jets dans l'environnement des trous noirs accrétantsMalzac, Julien 08 January 2008 (has links) (PDF)
Mes travaux de recherche portent sur l'étude du rayonnement (surtouts rayons X durs) provenant des trous noirs accrétant (dans les noyaux actifs de galaxies et les binaires X). L'objectif est d'en extraire des informations sur les conditions physique régnant dans l'environnement immédiat de ces objets. Les principales question auxquelles je tente de répondre sont les suivantes: Quelle est la structure et la géométrie de la matière accrétée au voisinage du trou noir ? Comment celle -ci évolue-t-elle avec le taux d'accrétion de masse ? Quel est la relation entre les processus d'accrétion et la formation de jets souvent observés dans ces systèmes ? Mon approche est fondée sur une comparaison précise entre les observations et les prédictions des divers modèles. Je présente les efforts poursuivis depuis près de dix ans afin de développer des outils de simulation numérique pour modéliser le transfert de rayonnement dans les plasma chauds des sources compactes X. Je montre comment ces outils ont été utilisés pour modéliser le continuum haute énergie et la variabilité des trous noirs accrétants et pour contraindre la structure du flot d'accrétion. Je présente également des résultats reposant sur l'analyse et l'interprétation d'observations menées avec des télescopes spatiaux tels que XMM-Newton et INTEGRAL ainsi que sur des d'observations simultanées à plusieurs longueurs d'ondes allant de la radio aux rayons X durs.
|
10 |
Chandra X-Ray Study Confirms That the Magnetic Standard Ap Star KQ Vel Hosts a Neutron Star CompanionOskinova, Lidia M., Ignace, Richard, Leto, Paolo, Postnov, Konstantin A. 01 September 2020 (has links)
Context. KQ Vel is a peculiar A0p star with a strong surface magnetic field of about 7.5 kG. It has a slow rotational period of nearly 8 years. Bailey et al. (AandA, 575, A115) detected a binary companion of uncertain nature and suggested that it might be a neutron star or a black hole. Aims. We analyze X-ray data obtained by the Chandra telescope to ascertain information about the stellar magnetic field and/or interaction between the star and its companion. Methods. We confirm previous X-ray detections of KQ Vel with a relatively high X-ray luminosity of 2 × 1030 erg s-1. The X-ray spectra suggest the presence of hot gas at > 20 MK and, possibly, of a nonthermal component. The X-ray light curves are variable, but data with better quality are needed to determine a periodicity, if any. Results. We interpret the X-ray spectra as a combination of two components: the nonthermal emission arising from the aurora on the A0p star, and the hot thermal plasma filling the extended shell that surrounds the "propelling"neutron star. Conclusions. We explore various alternatives, but a hybrid model involving the stellar magnetosphere along with a hot shell around the propelling neutron star seems most plausible. We speculate that KQ Vel was originally a triple system and that the Ap star is a merger product. We conclude that KQ Vel is an intermediate-mass binary consisting of a strongly magnetic main-sequence star and a neutron star.
|
Page generated in 0.0328 seconds