• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 16
  • 6
  • 5
  • 3
  • 1
  • Tagged with
  • 74
  • 30
  • 22
  • 11
  • 11
  • 10
  • 10
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The crystal structures of several organic compounds

Strieter, Frederick J. January 1959 (has links)
Thesis--University of California, Berkeley, 1959. / "Chemistry General" -t.p. "TID-4500 (15th Ed.)" -t.p. Includes bibliographical references (p. 38-39).
22

Gestão e gerenciamento de resíduos químicos e aplicação da tecnologia de destilação na recuperação de solventes orgânicos: estudo de caso da reciclagem do xileno / Management and chemical waste management and application of distillation technique in organic solvent recovery: case analyze of xylene recovery

Juliana Cristina Levada 08 August 2008 (has links)
Este trabalho de pesquisa foi elaborado com o objetivo de apresentar os resultados da recuperação e reciclagem de xileno, gerado em laboratórios de análises clínicas. É importante salientar a importância de um programa de gestão e gerenciamento de resíduos químicos, principalmente em instituições de ensino e pesquisa, de forma a contribuir para a preservação do ambiente e possibilitar a formação de profissionais conscientes, acostumados à práticas corretas de gestão e gerenciamento de resíduos químicos. A recuperação do resíduos de xileno foi feita por meio da técnica de destilação fracionada. Para a verificação da eficiência da recuperação do xileno, foram analisadas amostras do resíduo de xileno, do xileno recuperado e do xileno padrão, com o propósito de comparar os resultados obtidos destas amostras por meio das análises de Espectrofotometria de ultravioleta visível, (UVVis), Refratometria, Cromatografia Gasosa (CG) e Cromatografia Gasosa acoplada à Espectrometria de Massas (CG-EM). Os resultados desta pesquisa confirmam a eficiência da recuperação do resíduo de xileno, possibilitando que este retorne ao processo produtivo ou gerador, na forma de produto, refazendo assim, o ciclo por completo. A recuperação do resíduo do xileno e sua reciclagem traz benefícios ambientais e econômicos. / This research was elaborated with the objectives to present the results of recovery and recycling of xylene, generated in clinical analyses laboratories. It is essential to point out the importance of management and chemical waste management program, especially in education and research institutions, contributing to environment preservation and to making possible the qualification of conscientious professionals, used with correct practices of management and the chemical waste management. The xylene waste was recovered by fractional distillation technique. To verify the efficiency of the xylene recovery it was analyzed samples of waste xylene, recovered xylene and standard xylene, to compare the obtained data of these samples through the ultraviolet-visible Spectrophotometry (UV - Vis), Refractometry, Gas Chromatography (GC) and connected Gas Chromatography to the Spectrometry of Mass (GC-MS) analyses. The results of this work confirmed the efficiency of the xylene recovery, making possible its return to the productive or generator processes as a product, thus completing the entire cycle. The recovery of the xylene waste and its recycling has important ambient and economic benefits.
23

Preparação e caracterização de argila oganofílica para adsorção de BTX / Preparation and characterization of organoclay for adsorption of BTX

Bedin, Sidmara, 1988- 24 August 2018 (has links)
Orientadores: Meuris Gurgel Carlos da Silva, Onelia Aparecida Andreo dos Santos / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-24T22:59:54Z (GMT). No. of bitstreams: 1 Bedin_Sidmara_M.pdf: 4205652 bytes, checksum: d622e46268c9acb2352410201461233c (MD5) Previous issue date: 2014 / Resumo: Diariamente, uma grande quantidade de fluxos de água sofre contaminação por compostos orgânicos como, por exemplo, o benzeno, tolueno e xileno (BTX), os quais são compostos tóxicos e nocivos ao meio ambiente e aos seres humanos. Sendo assim, o estudo de técnicas de remoção e tratamento desses poluentes vem se tornando tema de muitas pesquisas. A adsorção tem se mostrado uma técnica bastante eficiente, pois atende aos limites da legislação, apresenta baixo consumo energético e custo de processo, ainda mais quando se faz uso de um adsorvente alternativo, como é o caso da argila organofílica. Nesse trabalho foi proposto avaliar a argila esmectítica sódica nacional Fluidgel, na forma natural e organofilizada, como materiais adsorventes alternativos na remoção dos compostos orgânicos BTX de soluções aquosas, em ensaios em sistema batelada e em sistema dinâmico. A argila organofílica foi preparada a partir da argila comercial e do sal quaternário de amônia HDTMA e se verificou a capacidade de troca catiônicas dos adsorventes. Foram realizadas técnicas de caracterização com a finalidade de determinar a área superficial do material, estrutura de poros, estrutura cristalina, morfologia de superfície, composição química, perda de massa e água e identificação de grupos funcionais de superfície. Testes preliminares comprovaram o caráter hidrofóbico da argila organofílica e sua afinidade por compostos orgânicos, bem como o caráter hidrofílico da argila comercial. Ensaios cinéticos de pH mostraram que o mesmo não afeta de maneira significativa o processo de adsorção. Os ensaios cinéticos de adsorção realizados em sistema batelada alcançaram o equilíbrio em 3h e apresentaram porcentagens de remoção de poluente superiores a 90%, com concentração inicial de 1,09 mmol/L. Os modelos cinéticos analisados foram o de pseudoprimeira ordem, pseudossegunda ordem e o de difusão intrapartícula, sendo que o modelo de pseudossegunda ordem melhor descreveu os dados experimentais. Para as isotermas de equilíbrios, testou-se as temperaturas de 35, 25 e 15 oC, sendo a maior capacidade de remoção com a maior temperatura, indicando que a adsorção nesse caso é de natureza endotérmica. Os modelos de isotermas avaliados foram Langmuir, Freundlich, Sips, DSL, MSAM e D-R, porém apenas o modelo de D-R descreveu de maneira satisfatória os dados experimentais. Pela análise dos parâmetros termodinâmicos, verificou-se que o processo de adsorção em estudo é espontâneo, favorecido a altas temperaturas e que possivelmente ocorre fisissorção. Devido à alta volatilidade dos compostos BTX, foi feita uma adaptação na adsorção em sistema dinâmico através de coluna de leito fixo e se realizou um ensaio cinético em leito de adsorção. A ordem de remoção dos compostos orgânicos, para ambas as argilas, foi xileno > tolueno > benzeno / Abstract: Daily a large amount of water flows suffers contamination by organic compounds as, for example, benzene, toluene and xylene (BTX), which are toxic compounds and harmful to the environment and to humans. Thus, the study of techniques for removal and treatment of these pollutants has become the subject of much research. The adsorption has proven to be a very effective technique because it meets the limits of the law, has low energy consumption and process cost, further when it makes use of an alternative adsorbent, as is the case with organoclay. In this study, it was proposed evaluate the national sodium smectite clay Fluidgel , in the natural and organophilizated form, as an alternative adsorbent material to the removal of organic compounds BTX from aqueous solutions in batch and dynamic system essays. The organoclay was prepared from the commercial clay and the quaternary ammonium salt HDTMA and it was verified the cationic exchange capacity of the adsorbents. Were performed characterization techniques in order to determine the surface area of the material, pore structure, crystal structure, surface morphology, chemical composition, mass and water loss and identification of surface functional groups. Preliminary tests confirmed the hydrophobic character of the organoclay and their affinity for organic compounds and the hydrophilic character of the commercial clay. pH kinetic experiments showed that the same does not affect significantly the adsorption process. Kinetic assays of adsorption performed in batch system reached equilibrium in 3 hours and showed pollutant removal percentages greater than 90%, with an initial concentration of 1.09 mmol/L. The kinetic models analyzed were the pseudo first order, pseudo second order and the intraparticle diffusion, being that the pseudo second order model best described the experimental data. For the equilibrium isotherm, was tested at temperatures of 35, 25 and 15 °C, being the largest removal capacity with the greatest temperature, indicating that the adsorption of this case is endothermic in nature. The isotherm models evaluated were Langmuir, Freundlich, Sips, DSL, MSAM and D-R, but only the D-R model described satisfactorily the experimental data. By the analysis of the thermodynamic parameters, it was found that the adsorption in study is spontaneous and favorable at high temperatures and that possibly occurs physisorption. Due to the high volatility of BTX compounds, it was made an adaptation to dynamic adsorption system through fixed bed column and a kinetic assay was carried out in adsorption bed. The order of removal of organic compounds for both clays was xylene > toluene > benzene / Mestrado / Engenharia Química / Mestra em Engenharia Química
24

Avaliação da lama vermelha na remoção de derivados de petróleo - benzeno, tolueno e xileno (BTX) / Red mud evaluation to petroleum derivatives removal - benzene, toluene and xylene (BTX)

Souza, Renata dos Santos, 1982- 22 August 2018 (has links)
Orientador: Meuris Gurgel Carlos da Silva / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-22T16:47:28Z (GMT). No. of bitstreams: 1 Souza_RenatadosSantos_D.pdf: 2889400 bytes, checksum: 692c0c9b405b4f550e07f530c56c124c (MD5) Previous issue date: 2013 / Resumo: Muitos compostos orgânicos derivados do petróleo são encontrados na água subterrânea, oriundos de processos industriais ou, principalmente, dos vazamentos de combustível em postos de distribuição. Dentre esses compostos encontram-se benzeno, tolueno e xileno (BTX), substâncias tóxicas e carcinogênicas e que se constituem nos componentes mais poluidores da gasolina. Processos de remoção dos BTX devem atender aos limites da legislação e, nesse sentido, a adsorção é um dos métodos mais eficientes. Neste trabalho foi proposto avaliar a lama vermelha, resíduo da indústria de beneficiamento do alumínio, nas formas bruta, calcinada e quimicamente tratada, como material adsorvente alternativo para remoção dos BTX em soluções sintéticas com um e dois adsorbatos. A caracterização da lama vermelha indicou que o material é macroporoso, muito heterogêneo e constituído de uma mistura de óxidos principalmente sodalita, hematita, goetita, gibbsita e quartzo. A calcinação provocou alterações na estrutura do adsorvente, aumentando a área superficial e a quantidade e tamanho de macroporos. O estudo do pHzpc mostrou que o pH natural da lama vermelha tornou a superfície carregada negativamente, atraindo assim o anel benzênico e melhorando a adsorção. Os ensaios de cinética de adsorção mostraram um processo rápido com no máximo 2h para atingir o equilíbrio e o percentual de remoção foi acima de 85% para todos os compostos. Nos ensaios de equilíbrio com monocomposto a ordem decrescente de adsorção foi benzeno, tolueno e xileno. As maiores capacidades de adsorção de benzeno foram qe = 0,332 mmol/g com lama bruta, e com lama calcinada qe = 0,335 mmol/g, esses valores são elevados quando comparados com adsorventes do tipo argilominerais. Os modelos Langmuir com dois sítios e múltiplos espaços de adsorção foram os que melhor se ajustaram aos resultados experimentais de adsorção com monocomposto, porém não conseguiram prever as multicamadas existentes nas isotermas. Foi verificada uma diminuição na remoção de todos os BTX na condição de mistura binária. A ordem de remoção de BTX foi inversa e com maiores remoções de xileno (qe = 0,3406 mmol/g). O modelo de Langmuir se ajustou adequadamente aos resultados experimentais, nessa condição / Abstract: Many organic compounds derived from oil are found in groundwater from industrial processes or specially from leaks at fuel tanks in gas stations. Among these compounds are benzene, toluene and xylene (BTX), toxic and carcinogenic substances that are the most polluters compounds from gasoline. BTX removal processes must attend to legislation limits and thus the adsorption process is one of the most efficient methods. In this work it was used red mud, an aluminum industry waste, in the raw, calcined forms and chemically treated forms, as an alternative adsorbent, to remove the BTX from single and two-component aqueous solutions. The characterization of the red mud indicated that this material is macroporous, very heterogeneous and compound from an oxides mixture, mainly sodalite, hematite, goethite, gibbsite and quartz. The calcination caused changes in the adsorbent structure, increasing the superficial area and the macroporous quantities and size. The pHpzc study showed that the natural red mud pH lets the surface negatively charged, attracting then the benzene rings and improving the adsorption. The kinetic adsorption showed a fast process that needs 2 h to achieve the equilibrium and a removal percentage of 85% for all compounds. In the single component equilibrium studies the adsorption order was benzene, toluene e xylene. The maximum adsorption capacities were qe = 0,332 mmol/g on raw red mud (RM), and on calcined red mud (CRM), qe = 0,335 mmol/g. DSL and MSAM models were the best fit to the experimental data in the single component adsorption, although they could not to predict the multiple layers existing in the isotherms. It was verified a decrease in the removal of all BTX in the two-component adsorption. There was a change in the BTX removal order and more removal of xylene (qe = 0,3406 mmol/g). The Langmuir model showed good fit to the experimental data in this condition / Doutorado / Engenharia de Processos / Doutora em Engenharia Quimica
25

A Study of the Homogeneous Vapour Phase Partial Oxidation of O-xylene

Bhalla, Sudhir 05 1900 (has links)
<p> The homogeneous partial oxidation of ortho-xylene vapour by air in a 316 s.s. flow reactor was studied in this work, which was conducted in connection with, and preceding an investigation of the kinetics of catalytic vapour-phase partial oxidation of a-xylene. The main purpose of the present work was to make an exploratory study of the contribution of the homogeneous reaction, if any, in as much as it would affect the catalytic oxidation to be studied on the same experimental set-up. This would permit the correction for the rate of homogeneous reaction during the catalytic reaction under a range of experimental conditions, or, reveal conditions under which the catalytic reaction could be conducted with minimum contribution by the homogeneous reaction. </p> <p> The three variables studied and the range of conditions for each are as follows : 1. Air: o-xylene molar ratio: ,124 to J78 2. Residence time: 0.443 sec. to 0.539 sec. 3. Temperature: 430° C to 490° c </p> <p>The reaction product stream was analyzed mainly by Gas Chromatography, both qualitatively and quantitatively. Qualitative analyses of liquid samples of the reactor condensate were also conducted using a Nuclear Magnetic Resonance Spectrometer, Mass Spectrometer, Infrared Spectrophotometer and also by conventional chemical techniques. </p> <p> Product analysis indicated a-xylene oxide as the reaction product at the lmv conversions studied. An empirical correlation obtained by statistical analysis of the experimental data, relating the conversions obtained and the variables studied, has been proposed to calculate the extent of the homogeneous reaction under the conditions of a catalytic reaction study. The results obtained in this work are consistent with the suggested kinetics and mechanism for this reaction. </p> / Thesis / Master of Engineering (MEngr)
26

The Partial Oxidation of Ortho-Xylene in a Transported-Bed Reactor

Paetkau, Theodore Reginald 10 1900 (has links)
<p> The partial, catalytic oxidation of ortho-xylene was investigated in a transported-bed reactor in which the vanadium pentoxide catalyst in the form of extremely small particles (average particle size of 45 microns) was conveyed upward by the reacting gases.</p> <p> The reaction was studied at a contact time of about 0.2 seconds, at air-to-o-xylene molar ratios of 42 to 86, at catalyst-to-gas ratios of 8 to 23, and at a reaction temperature of 750°F (400°C).</p> <p> Reaction products were analyzed by Gas Chromatography and Nuclear Magnetic Resonance Spectroscopy.</p> <p> Product analysis indicated a high yield of o-tolualdehyde, small yields of other oxidation products, but only trace amounts of phthalic anhydride. These results are consistent with proposed mechanisms for this reaction.</p> / Thesis / Master of Engineering (MEngr)
27

Application of oxygen microbubbles for in situ biodegradation of p-xylene contaminated ground water in a soil column

Jenkins, Kristen Buch 04 December 2009 (has links)
In situ biodegradation of p-xylene was studied in a 2.75 inch diameter column using oxygen microbubbles to supply the electron acceptor. One objective was to demonstrate that pxylene can be biodegraded in the soil column and to follow the degradation and pressure drops as a function of time. The next objective was to demonstrate the potential for biodegradation of p-xylene in the presence of ferrous iron and to follow bioremediation and anticipated pressure drops as a function of time. Then, an air sparging section was added prior to the biodegradation section to determine if the ferrous iron could be removed in this section. The air sparging section would then be flushed with air and/or water to determine if the ferrous could be removed from the sand matrix and alleviate the expected plugging. The bacteria degraded p-xylene to below detectable limits until the oxygen supply was exhausted. The pressure drops over this time showed a slight increase over the first few days and then a gradual decline, which shows promise for in situ biodegradation as the microorganisms were thought to cause plugging. The next run which studied the simultaneous biodegradation of xylene and ferrous oxidation showed no interference from the ferrous iron. The microorganisms seemed to store the oxygen that they needed before the ferrous could oxidize. The pressure drops showed no general trend, therefore the ferric precipitate did not cause an appreciable amount of plugging as expected. The air sparging section resulted in volatilization of xylene with very little ferrous oxidation. To flush the ferric precipitate from this zone, either a combination of air sparging and backwashing or backwashing at the fluidization velocity was needed to remove the ferric iron. / Master of Science
28

Characterization and optimization of an extractor-type catalytic membrane reactor for meta-xylene isomerization over Pt-HZSM-5 catalyst

Daramola, Michael Olawale 12 1900 (has links)
Thesis (PhD (Process Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Future chemical production is faced with a challenge of limited material and energy resources. However, process intensification might play a significant role to alleviating this problem. Vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Moreover, they often enhance the selectivity and yield of the target product. For about three decades, there has been a great evolution in p-Xylene production technology, with many equipment improvements being instituted in the industry. Typically, these improvements bring economic as well as processing advantages to the producers. Such developments are vital, as the capital costs for process equipment to produce and separate p-Xylene from xylene isomers, especially into high purity p-Xylene, still remain very high. However, with numerous advantages of membrane-based reactive separation processes compared to the conventional processes, the research focus has been channelled toward application of MFI-type zeolite membranes for in situ separation and isomerization of xylene in extractor-type catalytic membrane reactors. To contribute to this research line, this study has focused on characterization and optimization of an extractor-type catalytic membrane reactor (e-CMR) equipped with a nanocomposite MFI-alumina membrane as separation unit for m-Xylene isomerization over Pt-HZSM-5 catalyst. Nanocomposite MFI-alumina zeolite membranes (tubes and hollow fibres) used in this study were prepared via a so-called “hydrothermal pore-plugging synthesis technique” developed by Dalmon and his group more than a decade ago. In this concept, MFI material is grown by 'pore-plugging' direct hydrothermal synthesis in a porous matrix rather than forming thin films on top of the support. The advantages of this type of architecture over conventional film-like zeolite membranes include: (i) minimization of the effect of thermal expansion mismatch between the support and the zeolite, (ii) easy to scale-up, and (iii) easy module assembly, because the separative layer (zeolite crystals) are embedded within the pores of the ceramic support, reducing the effects of abrasion and thermal shocks. After membrane synthesis, the membrane quality and separation performance of these membranes were evaluated through single gas permeation (H2), binary gas separation (n-butane/H2) and ternary vapour mixture of xylene isomers using the vapour permeation (VP) method with p-Xylene as the target product. After evaluating the xylene isomer separation performance of the membranes, the membranes were used in extractor-type catalytic membrane reactors to carry out m-Xylene isomerization over Pt-HZSM-5 catalyst with p-Xylene as the target product. This dissertation has shown that nanocomposite MFI-alumina membrane tubes and hollow fibre membranes were selective to p-Xylene from xylene isomers. The dissertation also reports for the first time in open literature the excellent xylene separation performance of nanocomposite MFI-alumina membrane tubes at higher xylene loading (or vapour pressure). Unlike their film-like counterparts, the membranes still maintain increased selectivity to p- Xylene at higher xylene vapour pressures without showing a drastic decrease in selectivity. This outstanding property makes it a promising choice for pervaporation applications where concentration profile is usually a major problem at higher loading of xylene. With the use of nanocomposite MFI-alumina hollow fibre membranes, this research has demonstrated that membrane configuration and effective membrane wall thickness play a prominent role in enhancing cross membrane flux. Results presented in the study show, for the first time in open literature, that nanocomposite MFI-alumina hollow fibre membrane could enhance p-Xylene fluxes during the separation of ternary vapour mixture of xylene due to the smaller effective wall thickness of the membrane (membrane thickness <1 μm) when compared to conventional randomly oriented MFI zeolite films (membrane thickness >3 μm). During xylene isomers separation with nanocomposite hollow fibre membrane, about 30% increase in p-Xylene flux was obtained compared to the membrane tubes, operated under the same conditions. Additionally, hollow fibres offer the added advantage of membrane surfaceto- volume ratios as high as 3000 m2/m3 compared to conventional membrane tubes. Using this type of system could be instrumental in reducing both the size and cost of permeating modules for future xylene separation processes. However, obtaining high quality nanocomposite MFI-alumina membrane fibres is subject to the availability of high quality fibre supports. Regarding the application of nanocomposite MFI-alumina membrane tubes as extractor-type catalytic membrane reactors (referred to as extractor-type zeolite catalytic membrane reactor (e-ZCMR) in this study) for m-Xylene isomerization over Pt-HZSM-5, the results presented in this study further substantiate and confirm the potentials of e-ZCMRs over conventional fixed-bed reactors (FBRs). In the combined mode (products in the permeate plus products in the retentate), the e-ZCMR displayed 16-18% increase in p-Xylene yield compared to an equivalent fixed-bed reactor operated at the same operating conditions. On the basis of the high p-Xylene-to-o-Xylene (p/o) and p-Xylene-to-m-Xylene (p/m) separation factors offered by the membranes, p-Xylene compositions in the permeate-only mode (products in the permeate stream) in the range 95%-100% were obtained in the e-ZCMR. When a defect-free nanocomposite MFI-alumina membrane tube with p-Xylene-too- Xylene (p/o) separation factor >400 was used, ultra pure p-Xylene with p-Xylene purity approaching 100% in the permeate-only mode was obtained. Moreover, the e-ZCMR displayed 100% para-selectivity in the permeate-only mode throughout the temperatures tested. This is not possible with conventional film-like MFI-type zeolite membranes. Therefore, the application of nanocomposite MFI-alumina membranes in extractor-type catalytic membrane reactors could catalyse the development of energy-efficient membrane-based process for the production of high purity p-Xylene. Furthermore, in this dissertation, a report on modelling and sensitivity analysis of an e-ZCMR equipped with a nanocomposite MFI-alumina membrane tube as separation unit for m-Xylene isomerization over Pt-HZSM-5 catalyst is presented. The model output is in fair agreement with the experimental results with percentage errors (absolute) of 17%, 29%, 0.05% and 19.5% for p-Xylene yield in combined mode, p-Xylene selectivity in combined mode, p-Xylene selectivity in permeate-only mode and m-Xylene conversion, respectively. Therefore, the model is adequate to explain the behaviour of e-ZCMR during m-Xylene isomerization over Pt-HZSM-5 catalyst. The model is also adaptable to e-ZCMRs of different configurations such as hollow fibre MFI-alumina membrane-based e-ZCMRs. To gain more insight into the behaviour of the model to small changes in certain design parameters, sensitivity analysis was performed on the model. As expected, the sensitivity analysis revealed that intrinsic property of membrane (porosity, tortuosity), membrane effective thickness and reactor size (indicated with reactor internal diameter) play a significant role on the performance of e-ZCMR during p-Xylene production from the mixed xylenes. MFI-alumina zeolite membranes with optimized parameters such as membrane porosity, membrane tortuosity, and membrane effective wall thickness might enhance transport of p-Xylene through the membrane and thus resulting in higher p-Xylene flux through the membrane. This eventually would translate into an increase in p-Xylene yield in permeate-only mode. As far as it could be ascertained, this is the first report in open literature on modelling study with sensitivity analysis of e-ZCMR equipped with nanocomposite MFI-alumina membrane tubes as separation unit for m-Xylene isomerization over Pt-HZSM- 5 catalyst. In addition, the results of this study have confirmed previous research efforts reported on the application of extractor-type catalytic membrane reactors, having MFI-type membranes as separation units, for p-Xylene production via m-Xylene isomerization over a suitable catalyst. Also, new ideas were developed, tested and proposed that now provide a solid basis for further scale-up and techno-economical studies. Such studies are necessary to evaluate the competitiveness of the technology with the traditional processes for the production of high purity p-Xylene from mixed xylene. In summary, the encouraging results, as documented in this dissertation and also communicated to researchers in the area of membrane-based reactive separation (in the form of four peer-reviewed international scientific publications and four conference proceedings), could provide a platform for developing a scaled-up membrane-based energy-efficient industrial process for producing high purity p-Xylene through isomerization. / AFRIKAANSE OPSOMMING: Die produksie van chemiese stowwe word belemmer deur die uitdaging van beperkte materiaal- en energiebronne. Prosesuitbreiding kan egter ‘n noemenswaardige rol in die verligting van hierdie probleem speel. Die moontlike gebruik van multi-funksionele reaktore in prosesuitbreiding het navorsing in membraan-gebaseerde reaktiewe skeidingsprosesse (waar membraanskeiding en die katalitiese reaksie gelyktydig in ‘n enkele eenheid plaasvind) aangemoedig. Hierdie prosesse is aantreklik omdat hulle potensieel kompak en minder kapitaal-intensief is en ook teen laer koste as tradisionele prosesse bedryf kan word. Dit is ook dikwels die geval dat die multi-funksionele reaktor die selektiwiteit en opbrengs van die gewenste produk verhoog. In die afgelope drie dekades was daar ’n sterk verandering in die tegnologie wat gebruik word in die produksie van p-Xileen, met vele verbeterings aan nuwe toerusting wat in die nywerheid in bedryf gestel is. Hierdie verbeteringe hou gewoonlik ekonomiese-, sowel as bedryfsvoordele vir die produsente in. Ontwikkelings in hierdie veld is noodsaaklik aangesien die kapitale uitgawes vir die toerusting om p-Xileen, veral baie suiwer p-Xileen, van xileenpolimere te produseer en te skei, steeds baie hoog is. Met talle voordele gekoppel aan membraangebaseerde reaktiewe skeidingsprosesse in vergelyking met normale prosesse, is die navorsing egter gekanaliseer na die gebruik van MFI-tipe zeolietmembrane vir die in-situ skeiding en isomerisasie van xileen in ekstraksie-tipe katalitiese membraanreaktore. As bydrae tot hierdie navorsingsveld het hierdie studie op die karakterisering en optimering van ‘n ekstraksie-tipe katalitiese membraanreaktor (e-KMR), toegerus met ’n nanosaamgestelde MFI-alumina membraan as skeidingseenheid vir m-Xileen isomerisasie in die teenwoordigheid van ‘n Pt-HZSM-5 katalis, gefokus. Nanosaamgestelde MFI-alumina zeolietmembrane (buise en hol vesels) wat in hierdie studie gebruik is, is voorberei deur die sogenaamde “hidrotermiese porie-sperring sintese tegniek” wat meer as ‘n dekade gelede ontwikkel is deur Dalmon en sy groep. In hierdie tegniek word MFI-materiaal gekweek deur direkte hidrotermiese sintese in ‘n poreuse matriks, eerder as die vorming van dun films bo-op die ondersteuningsbasis. Die voordele van hierdie ontwerp bo dié van die konvensionele filmagtige zeolietmembrane sluit in: (i) minimering van die effek van termiese uitsetting op die gaping tussen die ondersteuningsbasis en die zeoliet, (ii) die gemak van opskalering, en (iii) die gemak waarmee die modules aanmekaar gesit kan word, omdat die skeidingslaag (zeolietkristalle) binne die porieë van die keramiek-ondersteuningsbasis geleë is, wat die effek van erodering en termiese skok verminder. Ná die membraansintese is die membraankwaliteit en skeidingsvermoë geevalueer deur enkel-gas-deurdringing (H2), binêre-gas-skeiding (n-butaan/H2), en ternêre dampmengsel van xileen-isomere deur die gebruik van die damp-deurdringingsmetode met p-Xileen as die teikenproduk. Hierdie tesis het gewys dat nanosaamgestelde MFI-alumina membraanbuise en hol vesel membrane selektief was ten opsigte van p-Xileen vanuit xileen-isomere. Die tesis doen ook, vir die eerste keer in die oop literatuur verslag, oor die uitstekende p-Xileen skeidingsvermoë van nanosaamgestelde MFI-alumina buise by hoër xileenladings (of dampdrukke). Anders as hulle filmagtige eweknieë het die membrane steeds hul verhoogde selektiwiteit vir p-Xileen by hoër dampdrukke behou, sonder ‘n merkbare verlaging in die selektiwiteit. Hierdie merkwaardige eienskap maak dit ‘n belowende keuse vir pervaporasie toepassings, waar die konsentrasieprofiel (as gevolg van hoër xileenladings) gewoonlik ’n noemenswaardige probleem is. Met die gebruik van nanosaamgestelde MFI-alumina membrane het hierdie navorsing gewys dat membraankonfigurasie en –wanddikte ‘n prominente rol speel in die verbetering van vloei oor die membraan. Resultate wat in die studie voorgelê word, wys, vir die eerste keer in oop literatuur, dat hol vesel nanosaamgestelde MFI-alumina membrane die deurvloei van p-Xileen kan verbeter gedurende die skeiding van ternêre dampmengsels van xileen, as gevolg van die kleiner effektiewe wanddikte van die membraan (<1 μm) wanneer dit vergelyk word met konvensionele kansgewys-geörienteerde MFI-zeoliet films met ‘n membraandikte van >3 μm. Tydens die skeiding van xileen-isomere met nanosaamgestelde hol vesel membrane is ‘n verbetering van ongeveer 30 % in die deurvloei van p-xileen verkry, vergeleke met membraanbuise, by identiese bedryfstoestande. Hol vesels bied ook die verdere voordeel van oppervlak-tot-volume verhoudings van so hoog as 3000 m2/m3 vergeleke met konvensionele membraanbuise. Die gebruik van hierdie tipe sisteem kan deurslaggewend wees in die vermindering van die grootte en koste van deurlatingseenhede in toekomstige xileen-skeidingsprosesse. Die vervaardiging van hoë-kwaliteit nanosaamgestelde MFIalumina membraanvesels is egter onderworpe aan die beskikbaarheid van hoë-kwaliteit vessel-ondersteuningsbasisse. Wat die gebruik van nanosaamgestelde MFI-alumina membraanbuise as ekstraksietipe katalitiese membraanreaktore betref (ekstraksie-tipe zeoliet katalitiese membraanreaktor, of e-ZKMR in hierdie studie) vir m-Xileen isomerisasie in die teenwoordigheid Pt-HZSM-5, bevestig die resultate die potensiaal van e-ZKM reaktore bo konvensionele vaste-bed reaktore (VBR). In die gekombineerde verstelling (met produkte in die permeaat sowel as die retentaat) toon die e-ZKMR ‘n 16 – 18% verbetering in die opbrengs van p-Xileen vergeleke met ‘n ekwivalente VBR by dieselfde bedryfskondisies. Gegrond op die hoë p-Xileen-tot-o- Xileen (p/o) en p-Xileen-tot-m-Xileen (p/m) skeidingsfaktore wat deur die membraan gebied word, is p-Xileen-samestellings in die slegs-permeaat verstelling (produkte in die permeaatstroom) van tussen 95 en 100% in die e-ZKMR verkry. Toe ‘n defek-vrye nanosaamgestelde MFI-alumina membraanbuis met ‘n (p/o) skeidingsfaktor van >400 gebruik is, is p-Xileen met ‘n suiwerheid na aan 100% in die slegs-permeaat verstelling verkry. Die e-ZKMR het ook 100% para-selektiwiteit in die slegs-permeaat verstelling getoon by alle toets-temperature, iets wat onmoontlik is met gewone filmagtige MFI-tipe zeolietmembrane. Om hierdie rede is dit moontlik dat die gebruik van MFI-alumina membrane in ekstraksie-tipe katalitiese membraanreaktore die ontwikkeling van energie-doeltreffende membraangebaseerde prosesse vir die produksie van suiwer p-Xileen kan bevorder. Verder word daar in hierdie tesis verslag gedoen oor die modelering en sensitiwiteitsanalise van ‘n e-ZKMR wat toegerus is met ‘n nanosaamgestelde MFI-alumina membraanbuis as skeidingseenheid vir m-Xileen isomerisasie in die teenwoordigheid van ‘n Pt-HZSM-5 katalis. Die model-uitsette is redelik in ooreenstemming met eksperimentele resultate met absolute fout-persentasies van 17, 27, 0.05 en 19.5 % vir die p-Xileen opbrengs in die gekombineerde verstelling, p-Xileen selektiwiteit in die gekombineerde verstelling, p-Xileen selektiwiteit in die slegs-permeaat verstelling en m-Xileen omsetting, onderskeidelik. Om hierdie rede kan die model die gedrag van ‘n e-ZKMR verduidelik tydens die m-Xileen isomerisasie in die teenwoordigheid van ‘n Pt-HZSM-5 katalis. Die model kan ook aangepas word na e-ZKM reaktore met verskillende konfigurasies, soos hol vesel MFIalumina membraan-gebaseerde e-ZKMRe. Om meer insig te kry in die gedrag van die model op klein veranderinge in sekere ontwerpparameters, is ‘n sensitiwiteitsanalise op die model uitgevoer. Soos verwag, het die sensitiwiteitsanalise gewys dat die intrinsieke eienskappe van die membraan (porositeit, tortuositeit), die effektiewe van membraandikte en die reaktorgrootte (gemeet as die interne deursnit van die reaktor) ‘n noemenswaardige rol speel in die gedrag van die e-ZKMR gedurende p-Xileen produksie vanuit gemengde xilene. MFI-alumina zeolietmembrane met geoptimeerde parameters soos membraanporositeit, -tortuositeit, en –wanddikte mag dalk die oordrag van p-Xileen deur die membraan bevorder en sodoende ‘n hoër vloei van p-Xileen oor die membraan bewerkstellig. Dit sal uiteindelik lei tot ‘n verhoging in die opbrengs van p-Xileen in die slegs-permeaat verstelling. So ver dit vasgestel kon word, is hierdie die eerste verslag in die oop literatuur wat die modelering en sensitiwiteitsanalise van ‘n e-ZKMR, toegerus met nanosaamgestelde MFIalumina membraanbuise as skeidingseenheid vir m-Xileen isomerisasie in die teenwoordigheid van ‘n Pt-HZSM katalis, aanspreek. Verder ondersteun die resultate van hierdie studie vorige navorsingspogings op die gebruik van e-KMRe, met MFI-tipe membrane as skeidingseenhede, vir die produksie van p-Xileen deur middel van m-Xileen isomerisasie in die teenwoordigheid van ‘n geskikte katalis. Verder is nuwe idees ontwikkel, getoets en voorgestel wat dien as ’n stewige basis vir verdere opskalering- en tegno-ekonomiese studies. Sodanige studies is nodig om die vatbaarheid van die tegnologie relatief tot die tradisionele prosesse te bepaal. Ter opsomming, die bemoedigende resultate, soos in die tesis gedokumenteer (en ook gepubliseer in vier ewe-knie beoordeelde internasionale wetenskaplike joernale en vier konferensiestukke), kan as ‘n platform dien vir die ontwikkeling van ’n opgeskaleerde membraan-gebaseerde energie-doeltreffende nywerheidsproses vir die produksie van suiwer p-Xileen deur middel van isomerisasie.
29

Industrially challenging separations via adsorption in metal-organic frameworks : a computational exploration

Lennox, Matthew James January 2015 (has links)
In recent years, metal-organic frameworks (MOFs) have been identified as promising adsorbents in a number of industrially relevant, yet challenging, separations, including the removal of propane from propane/propylene mixtures and the separation of mixtures of xylene isomers. The highly tuneable nature of MOFs - wherein structures may be constructed from a variety of diverse building blocks – has resulted in the publication of a staggering number of frameworks incorporating a wide range of network topologies, pore shapes and pore diameters. As a result, there are a huge number of candidate adsorbents to consider for a given separation. Molecular simulation techniques allow the identification of those structural features and characteristics of a MOF which exert the greatest influence on the adsorption and separation of the compounds of interest, providing insights which can both guide the selection and accelerate the development of adsorbents for a specific application. The separation of propane/propylene mixtures via adsorption has typically focused on selective adsorption of the olefin, propylene, via specific olefin-adsorbent interactions. These propylene-selective MOFs result in processes which selectively remove the most abundant species in the process stream and are typically characterised by high heats of adsorption, resulting in large adsorption units and adsorbents which are difficult to regenerate. In this work, the capability of MOFs to selectively adsorb propane over propylene is explored, potentially allowing for the design of smaller and more energy-efficient adsorption units. By studying a range of different MOFs as well as carbon-based model pores, it was found that the low-pressure selectivity of the structure is determined by the strength of the electrostatic interaction between propylene and the framework, while the adsorptive preference at industrially-relevant pressures is dominated by the enhanced packing efficiency of propylene over propane. The confinement of C3 molecules, however, may be employed to negate this entropic advantage and guide the development of materials which selectively adsorb propane over propylene. It has recently been reported that the adsorptive preference of a MOF for one xylene isomer over another may be predicted based solely on the pore size distribution of the structure. In this work, the impact of pore size on selectivity was studied systematically in both one-dimensional model pore systems of varying geometries and analogous published MOF structures. The ability of the framework to discriminate between xylene molecules in these systems was found to be determined primarily by the different packing arrangements available to the different isomers – while small pores were found to favour the slimmest of the isomers, larger pores were found to favour the more compact ortho- isomer. Finally, the adsorption and diffusion of xylene isomers in a more complex MOF, UiO-66(Zr), was studied in depth. Simulations were able to correctly predict the previously-reported preference of the MOF for ortho-xylene (oX). The smaller volume of the oX molecule compared to the other isomers was found to be responsible both for an enhanced entropic contribution and higher guest-host interaction energies. The importance of framework flexibility in the diffusion of xylene isomers in UiO-66(Zr) was also explored, with distortion of the structure in response to interaction with adsorbed molecules found to be essential in allowing xylenes to diffuse through the pore space.
30

Selective toluene disproportionation over ZSM-5 zeolite

Albahar, Mohammed January 2018 (has links)
This research aimed at improving p-xylene selectivity in toluene disproportionation over ZSM-5 zeolite by exploring the effect of crystal size and various post synthetic modification methods. A comprehensive study of the effect of different modifications on the physicochemical properties of ZSM-5 was investigated using X-ray diffraction (XRD), pyridine adsorption, Fourier transform infra-red (FTIR), 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR), BET surface area by N2 adsorption, inductively coupled plasma (ICP) and scanning electron microscopy (SEM). The catalytic performance of each catalyst was studied in a fixed bed reactor at a temperature 475 °C, WHSV 3-83 h-1 and two different pressures (1 and 10 bar). ZSM-5 zeolites with different crystal sizes (5, 50 and 100 ÂÂμm) were synthesized in house and compared with the commercially obtained ZSM-5 having a crystal size of 0.5 ÂÂμm. The increase in crystal size improved p-xylene selectivity which was attributed to the diffusion constraints imposed by the longer diffusion path lengths of large crystals. The highest p-xylene selectivity (58 %) was achieved over ZSM-5 with the largest crystal size 100 ÂÂμm at the highest WHSV 83 h-1. However, it was accompanied by a low conversion (2 wt. %). ZSM-5 with crystal size of 5 ÂÂμm delivered the best results in terms of the combination of para-selectivity (40 %) and toluene conversion (15 wt. %). The p-xylene produced in the channels of ZSM-5 can quickly isomerise to o-xylene and m-xylene on the external unselective acid sites. Different post modification methods were applied in this study in attempt to suppress the fast isomerization reaction by deactivating the external acid sites. This was achieved to some extent by depositing an inert silica layer using different silica agents, amounts and number of modification cycles and as a result p-xylene selectivity was significantly improved (84 %), especially over large crystals 5 ÂÂμm. The decrease in Brà̧nsted acidity (FTIR) suggested the success of the silylation method. Furthermore, impregnation of lanthanum and phosphorus on ZSM-5 improved p-xylene selectivity (40 %). FTIR measurements showed a drastic drop in the number of Brà̧nsted and Lewis acid sites after loading phosphorus which led to a large reduction in toluene conversion. Lanthanum impregnation had less effect on conversion and increased selectivity with decreased Brà̧nsted sites and pore volume reduction showed by N2 adsorption suggesting some pore narrowing. There are several approaches that can be considered in future to further improve p-xylene selectivity. Improving the synthesis of large crystals to balance acidity and crystal size can lead to the enhancement of p-xylene selectivity. Also, performing toluene disproportionation on optimised pre-coked ZSM-5 large crystals at high pressure can help to maintain the conversion while increasing p-xylene selectivity. Another approach would be to apply silylation modification to extruded large crystals ZSM-5.

Page generated in 0.0803 seconds