21 |
Análise da transição de fase normal-supercondutora dos compósitos [{Y,Gd}Ba2Cu3O7-]1-y-[PrBa2Cu3O7-]y e {[YBa2Cu3O7-]0,95-[PrBa2Cu3O7-]0,05}1-x-{Ag}xMonteiro, João Frederico Haas Leandro 22 September 2015 (has links)
Made available in DSpace on 2017-07-21T19:25:49Z (GMT). No. of bitstreams: 1
joao frederico Monteiro.pdf: 4579056 bytes, checksum: fa083a32b5c935e6fb6513dea178d562 (MD5)
Previous issue date: 2015-09-22 / Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Paraná / In this work we analyzed the superconductor-normal transition of the composites [YBa2Cu3O7-]1-y-[PrBa2Cu3O7-]y with 0<y<0,1, {[YBa2Cu3O7-]0,95-[PrBa2Cu3O7-]0,05}1-x-{Ag}x with 0<x<0,2 and [GdBa2Cu3O7-]0,95-[PrBa2Cu3O7-]0,05. All samples were prepared for solid state reaction method. The X-ray analysis demonstrated that the diffraction patterns are identical to that to YBa2Cu3O7-superconductor. The electrical resistivity measurements as a function of temperature demonstrated that praseodymium causes two major effects: splitting in 1 and 2 of the pairing transition and increasing of separation between them mainly affecting the peak in 2. The analysis of thermodynamic fluctuations have enabled critical and Gaussians exponents demonstrating that transitions at 1 and 2 are genuinely superconducting and not only the effect of granularity of the samples. However, the doping 20% of Ag in the composite [YBa2Cu3O7-0,95-[PrBa2Cu3O7-0,05 quenched the second transition, indicating that its appearance should be possibly related to a third phase given by Y1-yPryBa2Cu3O7- in nanometric scale in the region intergrain. Magnetic measurements confirm the temperature values for the superconductor-normal transitions obtained by electrical resistivity measurements. Furthermore, it was found that the praseodymium increases electric current density. The composite [GdBa2Cu3O7-]0,95-[PrBa2Cu3O7-]0,05 presented double transition differently of sample Gd1-yPryBa2Cu3O7- reported in other studies, showing that the preparation of samples in the form of composite may exhibit different properties. / Nesta tese analisamos a transição normal-supercondutora dos compósitos [YBa2Cu3O7-]1-y-[PrBa2Cu3O7-]y com 0<y<0,1, {[YBa2Cu3O7-]0,95-[PrBa2Cu3O7-]0,05}1-x-{Ag}x com 0<x<0,2 e [GdBa2Cu3O7-]0,95-[PrBa2Cu3O7-]0,05. Todas as amostras foram preparadas por reação de estado sólido. As análises de raios X mostraram que todos os compósitos formaram a estrutura cristalina ortorrômbica semelhante ao do YBa2Cu3O7- supercondutor. As medidas de resistividade elétrica em função da temperatura mostraram que o praseodímio causa dois efeitos principais: desdobramento em 1 e 2 da transição normal-supercondutora e alargamento da transição afetando principalmente o pico em 2. As análises das flutuações termodinâmicas permitiram obter expoentes críticos e gaussianos demonstrando que as transições ocorridas em 1 e 2 são genuinamente supercondutoras e não apenas um efeito de granularidade das amostras. Entretanto, a dopagem de 20% de prata no compósito [YBa2Cu3O7-]0,95-[PrBa2Cu3O7-]0,05 eliminou a segunda transição, indicando que seu surgimento deve estar relacionado possivelmente à uma terceira fase composta por Y1-yPryBa2Cu3O7- em escala nanométrica na região intergrão. Medidas magnéticas confirmaram os valores de temperatura para as transições normal-supercondutora obtida pelas medidas de resistividade elétrica. Além disso, verificou-se que o praseodímio aumenta a densidade de corrente elétrica. O compósito [GdBa2Cu3O7-]0,95-[PrBa2Cu3O7-]0,05 apresentou dupla transição diferentemente da amostra Gd1-yPryBa2Cu3O7- relatada em outros trabalhos, mostrando que a preparação das amostras na forma de compósito pode apresentar propriedades diferentes.
|
22 |
Impressão direta na produção de filmes cerâmicos supercondutores e viabilidade do uso de camada tampão de CeO2 via rota química /Souza, Gisele Aparecida de. January 2018 (has links)
Orientador: Rafael Zadorosny / Resumo: Neste trabalho é apresentada a produção de condutores revestidos de material supercondutor (superconducting coated conductors – SCC), ou seja, um filme supercondutor cerâmico, obtido por impressão direta da solução precursora sobre um substrato. Este processo foi estudado com o intuito de aplicar uma técnica de fabricação simples e de baixo custo visando a obtenção de filmes de boa qualidade a um custo reduzido. As soluções precursoras de CeO2, BSCCO e YBCO foram obtidas pelo método Pechini, considerada uma rota de produção de baixo custo. A fim de comparar a impressão direta com outra técnica, foram produzidos os mesmos filmes por spin coating. Para se obter os SCC, foi adicionada Ag às soluções dos materiais cerâmicos verificando sua incorporação na estrutura do filme e não apenas como um material de revestimento (como ocorre com as fitas supercondutoras de segunda geração). As caracterizações morfológicas e estruturais foram realizadas para identificar e analisar o processo de impressão direta do SCC. Já o comportamento supercondutor do material foi verificado através de medidas de R x T. / Abstract: This work presents the production of superconducting coated conductors (SCC), that is, a superconducting ceramic film obtained by direct printing of the precursor solution on a substrate. This process was studied with the intention of applying a simple and low cost technique focusing in the obtaining of good quality films at a reduced cost. The precursor solutions of CeO2, BSCCO and YBCO were obtained by the Pechini method, also considered a low cost production route. In order to compare direct printing with another technique, the same films were produced by spin coating. In order to obtain the SCC's, Ag was added to the solutions of the ceramic materials to incorporate in the film structure and not just as a coating material (as with second-generation superconducting tapes). Morphological and structural characterizations were performed to identify and analyze the SCC obtained by direct printing process. The superconductive behavior of the material was verified by measurements of R x T. / Doutor
|
23 |
Non-inductive solenoid coils based on second generation high-temperature superconductors and their application in fault current limitersLiang, Fei January 2017 (has links)
The gradual increase in global warming and environmental pollution has made low-carbon technologies an urgent need for the whole world. Superconducting technology, which is known for its extremely high conductivity and high power density, is capable enough to provide novel solutions, contributing to the future smart grid, thus aiding the power industry towards the realisation of a low-carbon and green planet. In recent decades, several industrial applications using superconducting technology have been developed. Of them, particularly in the power industry, a range of superconducting applications including superconducting magnetic energy storage (SMES), superconducting motors/generators, superconducting cables and superconducting fault current limiters (SFCLs) have been developed. Among them, SFCLs are one of the most promising and are successfully being implemented in power distribution networks. SFCLs exhibit low impedance during normal operation and gain considerable impedance under a fault condition, providing a new solution to the increasingly high fault current levels. However, most of the SFCL projects are limited to low-voltage and medium-voltage levels, there are very few successful operational trials of high voltage SFCLs. This thesis, for the first time, studies the comprehensive characteristics of solenoid type SFCLs based on second generation (2G) high temperature superconductors (HTS), which may be successfully implemented in power grids with high voltage levels. The main contributions of this work include three aspects: 1) proposing an innovative method for simulating the AC losses of the solenoid coils and an electro-magneto-thermal model for simulating the SFCL’s current limiting property; 2) comprehensive and in-depth comparison study concerning the application of the two types of non-inductive solenoid coils (braid type and non-intersecting type) in SFCLs both experimentally and numerically; and 3) the first and thorough discussion of the impact of different parameters such as pitch and radius of coils to the overall performance of braid type SFCLs and the validation of the braid type SFCL concept with a 220 V/300 A SFCL prototype. Based on these experimental and simulation works, the thesis provide strong guidance for the development of future non-inductive solenoid type SFCLs based on 2G HTS, which are promising for high voltage level power grid applications.
|
24 |
Current Limiting Characteristics of Parallel-Connected Coated Conductors for High-Tc Superconducting Fault Current Limiting Transformer (HTc-SFCLT)Omura, Koki, Kojima, Hiroki, Hayakawa, Naoki, Endo, Fumihiro, Noe, Mathias, Okubo, Hitoshi 06 1900 (has links)
No description available.
|
25 |
Analysis of Current Limiting and Recovery Characteristics of Superconducting Fault Current Limiting Transformer (SFCLT) with YBCO Coated ConductorsOkubo, H., Hanai, M., Kojima, H., Kito, T., Hayakawa, N. 06 1900 (has links)
No description available.
|
26 |
Grain boundaries in coated conductorsWeigand, Marcus January 2010 (has links)
The excitement which followed the discovery of high-temperature superconductors in 1986 was short-lived, as it became clear that their current carrying capacity (the critical current density Jc) was limited by grain boundaries (GBs). In order to reduce their detrimental effects coated conductors have been developed, in which a superconducting thin film is deposited on a polycrystalline, textured substrate. Within certain temperature and magnetic field ranges, however, GBs still limit the overall Jc. This fact motivated the present thesis, for which the electrical properties of different types of coated conductors, and in particular their GBs, were investigated. Several GBs and a single grain were isolated in a tape produced by metal-organic deposition (MOD), using a novel approach based on electron backscatter diffraction and a focused ion beam microscope. Measurements of their critical current densities for fields swept in the film plane showed the expected decrease with increasing misorientation angle at low fields. At higher fields an angle dependent crossover was found, from a GB to grain limited Jc. In order to confirm this result and put it into broader perspective, the dependence of Jc on the width of polycrystalline tracks was studied, and then explained in terms of the behaviour of the single GBs. Investigations using low-temperature scanning laser microscopy rounded out the picture, which also showed GB dissipation at certain angles and grain limitation at others. In measurements on samples produced by metal-organic chemical vapour deposition (MOCVD) characteristic differences compared to the MOD film were found. While both conductors exhibited high values of Jc, the variation with in-plane angle was significantly stronger for the MOCVD conductor, which can be explained by its sharper texture. In a track patterned perpendicular to the tape direction the phenomenon of vicinal channelling was observed, which previously was known only from films on single crystal substrates. Finally, an isolated boundary showed very high values of Jc, consistent with its low misorientation. In order to better understand how the substrate influences the superconducting properties, measurements were carried out on otherwise identical samples grown on different substrates. A tape with grains elongated along its rolling direction showed particularly good properties at all examined field orientations. This extends the previously reported result that high aspect ratios are beneficial at fields applied perpendicular to the tape plane.
|
27 |
A Process for Hybrid Superconducting and Graphene DevicesCochran, Zachary 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / As the search for ever-higher-speed, greater-density, and lower-power technologies accelerates, so does the quest for devices and methodologies to fulfill the increasingly-difficult requirements for these technologies. A possible means by which this may be accomplished is to utilize superconducting devices and graphene nanoribbon nanotechnologies. This is because superconductors are ultra-low-power devices capable of generating extremely high frequency (EHF) signals, and graphene nanoribbons are nanoscale devices capable of extremely high-speed and low-power signal amplification due to their high-mobility/low-resistance channels and geometry-dependent bandgap structure. While such a hybrid co-integrated system seems possible, no process by which this may be accomplished has yet been proposed.
In this thesis, the system limitations are explored in-depth, and several possible means by which superconducting and graphene nanotechnological systems may be united are proposed, with the focus being placed on the simplest method by which the technologies may be hybridized and integrated together, while maintaining control over the intended system behavior. This is accomplished in three parts. First, via circuit-level simulation, a semi-optimized, low-power (~0.21 mW/stage) graphene-based amplifier is developed using ideal and simplified transmission line properties. This system is theoretically capable of 159-269 GHz bandwidth with a Stern stability K >> 1 and low noise figure 2.97 <= F <= 4.33 dB for all appropriate frequencies at temperatures between 77 and 90 K. Second, an investigation of the behavior of several types of possible interconnect methodologies is performed, utilizing hybrid substrates and material interfaces/junctions, demonstrating that an Ohmic-contact superconducting-normal transmission line is optimal for a hybrid system with self-reflections at less than -25 dB over an operating range of 300 GHz. Finally, a unified layout and lithography construction process is proposed by which such a hybrid system could be developed in a monolithic physical system on a hybrid substrate while maintaining material and layout integrity under varying process temperatures.
|
28 |
Projeto e construção de limitador de corrente supercondutor utilizando fitas de YBCO / Project and construction of a fault current limiter using YBCO tapesLamas, Jérika Suely 06 October 2009 (has links)
Limitadores de corrente supercondutores resistivos (LCSR) são dispositivos com características elétricas próximas ao ideal quando ocorre a transição do estado supercondutor para o estado normal, limitando a corrente de falta através da inserção rápida de uma resistência na rede. A viabilidade técnica e econômica destes limitadores aumentou após o desenvolvimento dos supercondutores de alta temperatura crítica HTS. A primeira geração de fitas HTS (BSCCO) consiste em multifilamentos de material supercondutor embutidos em uma matriz de prata. A densidade de corrente crítica típica é de aproximadamente 140 A/mm2. Contudo, a resistência alcançada pelo LCSR quando atinge o estado normal não é suficiente para limitar a corrente de falta, sendo necessários longos comprimentos de fitas (~5 km) para que a corrente seja limitada. O recente desenvolvimento de fitas supercondutoras de YBCO com filmes finos texturizados e com substrato de alta resistividade superou o desempenho das fitas de BSCCO para esta aplicação. Com uma densidade de corrente crítica de 136 A/mm2, as fitas de YBCO são bem conhecidas pelo seu alto valor de índice n (aproximadamente 30), rápida resposta de transição após falta e alta resistência elétrica no estado normal. Neste trabalho foram analisados o comportamento elétrico e magnético das fitas de BSCCO e YBCO (em amostras curtas de 0,2 m) utilizando diferentes técnicas de caracterização das propriedades das fitas HTS. A partir destes resultados, medidas com pulsos de corrente DC e AC com intensidades de 3 a 7 vezes a corrente crítica do sistema (I=720 A a 1700 A) com duração de 1 a 5 ciclos da rede em 60 Hz (16 a 80 ms) foram realizados de forma a obter as características do tempo de recuperação em um elemento contendo 4 fitas em paralelo (0,4 m). Os resultados permitiram o projeto, construção e medidas em corrente AC de um protótipo LCSR (Ipico = 2 kA) contendo 16 elementos sob condições normais de operação da rede (220 V - 60 Hz). / Resistive Superconducting fault current limiter (SFCL) are devices with electrical behavior near the ideal when it changes its state from the superconducting to the normal state, limiting the fault current by the insertion of a fast transition resistance in the grid. The technical and economical feasibility of these limiters arose after the development of the high critical temperature superconductors HTS. First generation HTS tapes (BSCCO) consist of multifilamentary composite tapes embedded in a silver matrix. The typical critical current density is approximately 14 kA/cm2. However, the resistance reached by the SFCL when normal state occurs is not high enough to limit the fault current, making necessary long lengths of tapes (~5 km) for limiting purposes. The recently development of coated conductors composites with high resistivity metal substrate have succeeded the BSCCO tapes which are based on YBCO textured film. Upon carrying a critical current density of 13.6 kA/cm2, YBCO tapes are well known for their high n-index value (approximately 30), fast transition response after fault, and high electrical resistance in the normal state. In this work, we will present the electrical and magnetic performance of BSCCO and YBCO tapes (short samples of 0.2 m) using several techniques to characterize the properties of the HTS tapes. It was also performed analysis with DC and AC currents peaks with strength of 3 to 7 times the critical current (I=720 A to 1700 A) lasting 1 to 5 cycles (16 to 80 ms) in order to verify the recovery characteristics in an element with 4 tapes in a parallel connection. And with those characteristics we designed and constructed and measured in AC current a SFCL prototype (Ipeak = 2 kA) consisting in 16 elements to use in the grid (220 V - 60 Hz) under operational conditions.
|
29 |
Projeto e construção de limitador de corrente supercondutor utilizando fitas de YBCO / Project and construction of a fault current limiter using YBCO tapesJérika Suely Lamas 06 October 2009 (has links)
Limitadores de corrente supercondutores resistivos (LCSR) são dispositivos com características elétricas próximas ao ideal quando ocorre a transição do estado supercondutor para o estado normal, limitando a corrente de falta através da inserção rápida de uma resistência na rede. A viabilidade técnica e econômica destes limitadores aumentou após o desenvolvimento dos supercondutores de alta temperatura crítica HTS. A primeira geração de fitas HTS (BSCCO) consiste em multifilamentos de material supercondutor embutidos em uma matriz de prata. A densidade de corrente crítica típica é de aproximadamente 140 A/mm2. Contudo, a resistência alcançada pelo LCSR quando atinge o estado normal não é suficiente para limitar a corrente de falta, sendo necessários longos comprimentos de fitas (~5 km) para que a corrente seja limitada. O recente desenvolvimento de fitas supercondutoras de YBCO com filmes finos texturizados e com substrato de alta resistividade superou o desempenho das fitas de BSCCO para esta aplicação. Com uma densidade de corrente crítica de 136 A/mm2, as fitas de YBCO são bem conhecidas pelo seu alto valor de índice n (aproximadamente 30), rápida resposta de transição após falta e alta resistência elétrica no estado normal. Neste trabalho foram analisados o comportamento elétrico e magnético das fitas de BSCCO e YBCO (em amostras curtas de 0,2 m) utilizando diferentes técnicas de caracterização das propriedades das fitas HTS. A partir destes resultados, medidas com pulsos de corrente DC e AC com intensidades de 3 a 7 vezes a corrente crítica do sistema (I=720 A a 1700 A) com duração de 1 a 5 ciclos da rede em 60 Hz (16 a 80 ms) foram realizados de forma a obter as características do tempo de recuperação em um elemento contendo 4 fitas em paralelo (0,4 m). Os resultados permitiram o projeto, construção e medidas em corrente AC de um protótipo LCSR (Ipico = 2 kA) contendo 16 elementos sob condições normais de operação da rede (220 V - 60 Hz). / Resistive Superconducting fault current limiter (SFCL) are devices with electrical behavior near the ideal when it changes its state from the superconducting to the normal state, limiting the fault current by the insertion of a fast transition resistance in the grid. The technical and economical feasibility of these limiters arose after the development of the high critical temperature superconductors HTS. First generation HTS tapes (BSCCO) consist of multifilamentary composite tapes embedded in a silver matrix. The typical critical current density is approximately 14 kA/cm2. However, the resistance reached by the SFCL when normal state occurs is not high enough to limit the fault current, making necessary long lengths of tapes (~5 km) for limiting purposes. The recently development of coated conductors composites with high resistivity metal substrate have succeeded the BSCCO tapes which are based on YBCO textured film. Upon carrying a critical current density of 13.6 kA/cm2, YBCO tapes are well known for their high n-index value (approximately 30), fast transition response after fault, and high electrical resistance in the normal state. In this work, we will present the electrical and magnetic performance of BSCCO and YBCO tapes (short samples of 0.2 m) using several techniques to characterize the properties of the HTS tapes. It was also performed analysis with DC and AC currents peaks with strength of 3 to 7 times the critical current (I=720 A to 1700 A) lasting 1 to 5 cycles (16 to 80 ms) in order to verify the recovery characteristics in an element with 4 tapes in a parallel connection. And with those characteristics we designed and constructed and measured in AC current a SFCL prototype (Ipeak = 2 kA) consisting in 16 elements to use in the grid (220 V - 60 Hz) under operational conditions.
|
30 |
Investigation of renormalization effects in high temperature cuprate superconductors / Untersuchung von Renormierungseffekten in Hochtemperatur-Kuprat-SupraleiternZabolotnyy, Volodymyr B. 09 May 2008 (has links) (PDF)
While in conventional superconductors coupling between electrons and phonons is known to be responsible for the electron pairing, for the high temperature superconductors the pairing media remains under debates. Since the interactions of electrons with other degrees of freedom (phonons, magnetic excitations, etc) manifest themselves by an additional renormalization in the electronic dispersion, they can be investigated by means of Angle Resolved Photoelectron Spectroscopy. In the work renormalization in two families of high Tc cuprates have been studied. Along the diagonal of the two-dimensional BZ, the renormalization effects are represented by an unusual band dispersion that develops a so-called ‘‘kink’’. In the vicinity of the (pi, 0) point of the BZ, where the order parameter reaches its maximum, the renormalization is noticeably stronger and makes itself evident even in the shape of a single spectral line measured for a fixed momentum. It was shown that for the Bi-2212 samples substitution of Cu atoms in Cu-O plane changes renormalization features in ARPES spectra both in nodal and antinodal parts of the Brillouin zone. The smearing of the dip in the in the spectral line shape measured at (pi; 0) point can be well explained by coupling of electrons to the magnetic resonance mode. The effect of Zn and Ni substitution on the antinodal ARPES spectra was shown to be in good agreement with the influence of these impurities on magnetic resonance mode seen in inelastic neutron scattering experiments. This, in addition to the previous ARPES studies of temperature and doping dependence of peak-dip-hump structure, mass renormalization near antinodal region and a kink in the nodal part of Brillouin zone, provides further evidence that the coupling to magnetic excitations, rather than to phonons, is responsible for the observed unusual renormalization. Unlike the well studied Bi-2212 family of cuprates, photoemission on YBCO-123 turns out to be much more complicated. The observed spectra have a strong contribution from a heavily overdoped surface component with the hole doping level of about x~0.30, which is weakly dependent on the sample stochiometry. Absence of any signs of superconductivity in the spectra of the overdoped component was argued to result from the unusually high doping level. This conclusion is supported by the fact that the overdoped bands give rise to the Fermi surface and band structure consistent with the predictions of the LDA calculations, as well as, by the dependence of the photoemission matrix element on the excitation energy, which closely follows that of the superconducting bulk component. Specific experimental geometry was used to enhance the signal coming from the superconducting component. In particular, experiments with circularly polarized light bundled with simple theoretical considerations enabled better separation of the surface and the bulk components. This type of experiments also suggests that the overdoped component is mainly localized in the topmost CuO2 bilayer, while the next bilayers in the YBCO-123 structure already represent bulk properties and retain superconductivity. Using partially Ca substituted samples it was possible to obtain spectra with a suppressed overdoped component. The likely reason for the suppression is a shift of the most probable cleavage plane from the Ba–O interface to the Y layer. Spectra from the Ca substituted sample clearly reveal a sizable superconducting gap, and strong renormalization effects in the vicinity of the antinodal point. The fact that the renormalization vanishes above Tc and has strong momentum dependence, diminishing away from the (pi; 0)/(0; pi) point, strongly suggests that the reason for this renormalization in YBCO-123 is coupling of the electronic subsystem to spin resonance, similar to the case of Bi-2212.
|
Page generated in 0.0464 seconds