• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 23
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 119
  • 31
  • 23
  • 17
  • 17
  • 17
  • 15
  • 15
  • 14
  • 12
  • 12
  • 12
  • 12
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Feed-Forward Compensation of Non-Minimum Phase Systems

Dudiki, Venkatesh 20 December 2018 (has links)
No description available.
42

The Eneström–Kakeya Theorem for Polynomials of a Quaternionic Variable

Carney, N., Gardner, Robert B., Keaton, R., Powers, A. 01 February 2020 (has links)
The well-known Eneström–Kakeya Theorem states that a polynomial with real, nonnegative, monotone increasing coefficients has all its complex zeros in the closed unit disk in the complex plane. In this paper, we extend this result by showing that all quaternionic zeros of such a polynomial lie in the unit sphere in the quaternions. We also extend related results from the complex to quaternionic setting.
43

An Introduction To Hellmann-feynman Theory

Wallace, David 01 January 2005 (has links)
The Hellmann-Feynman theorem is presented together with certain allied theorems. The origin of the Hellmann-Feynman theorem in quantum physical chemistry is described. The theorem is stated with proof and with discussion of applicability and reliability. Some adaptations of the theorem to the study of the variation of zeros of special functions and orthogonal polynomials are surveyed. Possible extensions are discussed.
44

Paths of zeros of analytic functions describing finite quantum systems.

Eissa, Hend A., Evangelides, Pavlos, Lei, Ci, Vourdas, Apostolos 09 November 2015 (has links)
yes / Quantum systems with positions and momenta in Z(d) are described by the d zeros of analytic functions on a torus. The d paths of these zeros on the torus describe the time evolution of the system. A semi-analytic method for the calculation of these paths of the zeros is discussed. Detailed analysis of the paths for periodic systems is presented. A periodic system which has the displacement operator to a real power t, as time evolution operator, is studied. Several numerical examples, which elucidate these ideas, are presented.
45

Episode 3.01 – Adding and Subtracting Ones and Zeros

Tarnoff, David 01 January 2020 (has links)
It may sound trivial, but in this episode we’re going to learn to add and subtract…in binary. This will serve as a basis for learning about negative binary representations and the circuitry needed to perform additions in hardware.
46

POLSYS_PLP: A Partitioned Linear Product Homotopy Code for Solving Polynomial Systems of Equations

Wise, Steven M. 25 August 1998 (has links)
Globally convergent, probability-one homotopy methods have proven to be very effective for finding all the isolated solutions to polynomial systems of equations. After many years of development, homotopy path trackers based on probability-one homotopy methods are reliable and fast. Now, theoretical advances reducing the number of homotopy paths that must be tracked, and in the handling of singular solutions, have made probability-one homotopy methods even more practical. This thesis describes the theory behind and performance of the new code POLSYS_PLP, which consists of Fortran 90 modules for finding all isolated solutions of a complex coefficient polynomial system of equations by a probability-one homotopy method. The package is intended to be used in conjunction with HOMPACK90, and makes extensive use of Fortran 90 derived data types to support a partitioned linear product (PLP) polynomial system structure. PLP structure is a generalization of m-homogeneous structure, whereby each component of the system can have a different m-homogeneous structure. POLSYS_PLP employs a sophisticated power series end game for handling singular solutions, and provides support for problem definition both at a high level and via hand-crafted code. Different PLP structures and their corresponding Bezout numbers can be systematically explored before committing to root finding. / Master of Science
47

Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionais / Analytical and numerical solutions of nonlinear equations using computational resources

Silva, Diego Alves 19 December 2017 (has links)
O principal objetivo deste trabalho é apresentar técnicas de solução para equações não lineares. Especificamente, consideramos equações compostas por funções elementares, dentre elas polinomiais, racionais, trigonométricas, exponenciais e logarítmicas, e por operações algébricas de soma, subtração, multiplicação, divisão, potência e raiz. Exploramos técnicas de resolução analítica e numérica. Como não existem fórmulas resolventes de extensão geral, a técnica analítica consiste em aplicar operações elementares que nos levam a equações equivalentes (que têm a mesma solução) até que se consiga uma equação simples, de fácil resolução. Os métodos numéricos abrangem um conjunto maior de equações e obtêm uma aproximação para a solução por meio de um processo que gera uma sequência de aproximações. Entre os métodos numéricos estudados estão Bissecção, de Newton, das Secantes e do Ponto Fixo (ou Iteração Linear). Recursos Computacionais como calculadora, planilha eletrônica e o software Maxima foram utilizados com objetivo de automatizar os cálculos, tornando essa tarefa mais rápida, e também buscando extrair informações adicionais do processo de resolução como criar tabelas e traçar gráficos. Realizamos testes numéricos com equações de diversos graus de dificuldade. Observamos as vantagens, as desvantagens e as limitações de cada método e de cada recurso. / The goal of this work is to present solution techniques for nonlinear equations. Specifically, we consider equations compounded of elementary functions, among them polynomials, rational, trigonometric, exponential and logarithmic, and of algebraic operations of addition, subtraction, multiplication, division, power and root. We explore analytical and numerical resolution techniques. Since there are no general resolvent formulas, the analytic technique consists of applying elementary operations that lead to equivalent equations (which have the same solution) until a simple and easily to solve equation is obtained. Numerical methods cover a larger set of equations and obtain an approximation to the solution by a process which generates a sequence of approximations. Among the numerical methods we studied Bisection, Newton, Secant and Fixed Point (or Linear Iteration) methods. Computational resources such as calculator, spreadsheet and the software Maxima were used in order to automate calculations, making this task faster, as well as seeking for additional information from the resolution process, such as creating tables and graphics. We perform numerical tests, with equations of varying degrees of difficulty. We note the advantages, disadvantages and limitations of each method and resource.
48

Combinações lineares de polinômios de Chebyshev e polinômios auto-recíprocos /

Hancco Suni, Mijael January 2019 (has links)
Orientador: Vanessa Avansini Botta Pirani / Resumo: O presente trabalho tem como objetivo principal estudar o comportamento dos zeros de alguns tipos de polinômios auto-recíprocos gerados a partir de polinômios quaseortogonais de Chebyshev de ordens um e dois. Os zeros dos polinômios auto-recíprocos que construímos estão ligados aos zeros de polinômios quase-ortogonais. Os polinômios quaseortogonais podem ser obtidos a partir de uma sequência de polinômios ortogonais. Neste trabalho, usaremos os polinômios de Chebyshev para obter polinômios quase-ortogonais e usaremos resultados sobre o comportamento de zeros desses polinômios para obter informações sobre o comportamento dos zeros de polinômios auto-recíprocos. / Abstract: The main objective of this work is to study the behavior of the zeros of some classes of self-reciprocal polynomials related to Chebyshev quasi-orthogonal polynomials of order one and two. The zeros of self-reciprocal polynomials are linked to the zeros of quasiorthogonal polynomials, which can be obtained from a sequence of orthogonal polynomials. In this work we use the Chebyshev polynomials to obtain classes of quasi-orthogonal polynomials and from results on the behavior of their zeros, we obtain information about the zeros of some classes of self-reciprocal polynomials. / Mestre
49

Polinômios algébricos e trigonométricos com zeros reais

Botta, Vanessa Avansini [UNESP] 24 February 2003 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:08Z (GMT). No. of bitstreams: 0 Previous issue date: 2003-02-24Bitstream added on 2014-06-13T20:08:13Z : No. of bitstreams: 1 botta_va_me_sjrp.pdf: 571155 bytes, checksum: 6e200c838e03e019c93da99a37b1515f (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O principal objetivo deste trabalho é realizar um estudo sobre polinômios algébricos e trigonométricos que possuem somente zeros reais. O Teorema de Hermite nos dá condições necessárias e su cientes para que isto aconteça. São discutidas questões relacionadas à localização dos zeros, onde a Regra de Sinais de Descartes teve grande importância. Além disso, alguns teoremas clássicos sobre zeros de polinômios algébricos e trigonométricos são apresentados. / The main purpose of this work is to study algebraic and trigonometric poly- nomials that have only real zeros. The Hermite Theorem gives necessary and su cient conditions for this to be true. Questions concerning the locations of the zeros are discussed, where the Descarte's Rule of Signs is of great impor- tance. Furthermore, some classical theorems concerning zeros of algebraic and trigonometric polynomials are presented.
50

Soluções analíticas e numéricas de equações não lineares com auxílio de recursos computacionais / Analytical and numerical solutions of nonlinear equations using computational resources

Diego Alves Silva 19 December 2017 (has links)
O principal objetivo deste trabalho é apresentar técnicas de solução para equações não lineares. Especificamente, consideramos equações compostas por funções elementares, dentre elas polinomiais, racionais, trigonométricas, exponenciais e logarítmicas, e por operações algébricas de soma, subtração, multiplicação, divisão, potência e raiz. Exploramos técnicas de resolução analítica e numérica. Como não existem fórmulas resolventes de extensão geral, a técnica analítica consiste em aplicar operações elementares que nos levam a equações equivalentes (que têm a mesma solução) até que se consiga uma equação simples, de fácil resolução. Os métodos numéricos abrangem um conjunto maior de equações e obtêm uma aproximação para a solução por meio de um processo que gera uma sequência de aproximações. Entre os métodos numéricos estudados estão Bissecção, de Newton, das Secantes e do Ponto Fixo (ou Iteração Linear). Recursos Computacionais como calculadora, planilha eletrônica e o software Maxima foram utilizados com objetivo de automatizar os cálculos, tornando essa tarefa mais rápida, e também buscando extrair informações adicionais do processo de resolução como criar tabelas e traçar gráficos. Realizamos testes numéricos com equações de diversos graus de dificuldade. Observamos as vantagens, as desvantagens e as limitações de cada método e de cada recurso. / The goal of this work is to present solution techniques for nonlinear equations. Specifically, we consider equations compounded of elementary functions, among them polynomials, rational, trigonometric, exponential and logarithmic, and of algebraic operations of addition, subtraction, multiplication, division, power and root. We explore analytical and numerical resolution techniques. Since there are no general resolvent formulas, the analytic technique consists of applying elementary operations that lead to equivalent equations (which have the same solution) until a simple and easily to solve equation is obtained. Numerical methods cover a larger set of equations and obtain an approximation to the solution by a process which generates a sequence of approximations. Among the numerical methods we studied Bisection, Newton, Secant and Fixed Point (or Linear Iteration) methods. Computational resources such as calculator, spreadsheet and the software Maxima were used in order to automate calculations, making this task faster, as well as seeking for additional information from the resolution process, such as creating tables and graphics. We perform numerical tests, with equations of varying degrees of difficulty. We note the advantages, disadvantages and limitations of each method and resource.

Page generated in 0.0243 seconds