21 |
Zeros de polinômios em espaços de Banach / Zeros of polynomials on real Banach spacesBatista, Leandro Candido 05 March 2010 (has links)
Este trabalho aborda principalmente dois tópicos em Análise Funcional. No primeiro tópico, estudamos zeros de polinômios em espaços de Banach reais. Apresentamos resultados devidos a J. Ferrer, estabelecendo que todo polinômio fracamente contínuo sobre os subconjuntos limitados de um espaço de Banach, de dual não separável na topologia fraca estrela, admite um subespaço linear fechado de dual não separável na topologia fraca estrela, no qual o polinômio se anula. No segundo tópico, exibimos a versão multilinear do Lema de Phelps devido a R. Aron, A. Cardwell., D. García e I. Zalzuendo. / We study two topics in Functional Analysis. In the first topic, we study zeros of polynomials on real Banach spaces. We present results due to J. Ferrer, stating that every polynomial weakly continuous on bounded subsets of a Banach space, whose dual is not separable in the weak-star topology, admits a closed linear subspace whose dual is not separable in the weak- star topology either, where the polynomial vanishes. In the second topic, we show a multilinear version for the Phelps\' Lemma by R. Aron, A. Cardwell., D. García and I. Zalzuendo.
|
22 |
Determinação de zeros na matriz de transferência de sistemas MIMO baseada em análise de correlação. / Determination of transfer matrix zeros from MIMO systems based on correlation analysis.Massaro, Leandro Cuenca 02 June 2014 (has links)
O trabalho tem por objetivo avaliar diferentes métodos para identificar zeros na matriz de transferência de sistemas MIMO e propor um método novo baseado em análise de correlação. Estes métodos são utilizados durante a etapa de pré-identificação, a fim de se obter informações relevantes que possam ser utilizadas para se reduzir o tempo dos experimentos, diminuir a variabilidade dos parâmetros dos modelos e melhorar a eficácia dos modelos remanescentes. Estes métodos são aplicados a sistemas MIMO lineares, com dados coletados em malha aberta e em malha fechada. É avaliado o ganho obtido em relação à capacidade de predição dos modelos, a redução do tempo de identificação e o ganho de desempenho do controlador MPC que utiliza estes modelos. O trabalho conclui que a informação de zeros resulta em melhorias no tempo de identificação e no desempenho do controlador MPC. / This work aims to evaluate different methods to identify zeros in the transfer matrix of MIMO systems and to propose a new method based on correlation analysis. These methods are used during the pre-identification stage in order to identify relevant information that can be used to reduce the duration of the experiment, decrease model parameter variability and improve the accuracy of the remaining models. These methods are applied to MIMO linear systems, with data collected in open and closed-loop. The gains obtained in relation to the predictive ability of the models, the reduction of identification time and the performance gain of the MPC using these models are evaluated. This work concludes that the zero information results in improvements in identification time and in performance gain of the MPC controller.
|
23 |
Algoritmos algebricos para enumerar e isolar zeros polinomiais complexos / Algebraic algorithms for enumerate and isolate complex polynomial zerosCamargo-Brunetto, Maria Angelica de Oliveira January 1994 (has links)
O presente trabalho trata do problema de isolar zeros de polinômios complexos. Muitos algoritmos calculam zeros polinomiais, a partir de regiões iniciais disjuntas, cada uma contendo um único zero. Entretanto o problema de obter tais regiões ainda e alvo de estudo, uma vez que as soluções propostas ainda não são satisfatórias. A obtenção de regiões disjuntas, denominada de isolamento de raízes está diretamente relacionada com a contagem (enumeração) do número de raízes numa determinada região do plano complexo. Algoritmos para enumerar e isolar raízes de polinômios complexos são analisados, desenvolvidos e implementados. A proposta de uma modificação no método numérico de Wilf e realizada, na qual se usa basicamente Seqüências de Sturm e o principio do argumento da analise complexa. Um enfoque algébrico e dado para o algoritmo, visando enumerar zeros de forma exata dentro de um retângulo. Diversas melhorias foram introduzidas, principalmente no tratamento da presença de zeros nas fronteiras de um retângulo alvo de pesquisa. O desempenho do algoritmo proposto e avaliado tanto nos aspectos teórico como pratico, através da determinação da complexidade teórica e através de testes experimentais. A abrangência do algoritmo também e verificada, através da realização de testes com polinômios mal condicionados. Uma comparação deste algoritmo com um recente trabalho e também realizada, mostrando a adequação deles de acordo com o tipo de polinômio. / In this thesis, the problem of isolating polynomial complex zeros is treated. There are many algorithms to calculate polynomial zeros, having previously isolated regions, each containning only one zero. Despite of this, the problem of obtainning such regions is still unsatisfactory. This problem, called root isolation, requires number of root in a given region of the complex plane. Algorithms to enumerate and isolate complex polynomial roots are analised, developed and implemented. A modified Wilf method is given, in with Sturm Sequences and the principle of argument is used. An algebraic approach is given, with the aim to enumerate zeros inside a rectangle in an exact way. Several improvements are introduced, mainly to treat zeros on the boundary of the rectangle. The performance of this new algorithm is evaluated theoretical as well as practice point of view, by means experimental tests. The robustness of the algorithm is verified by means of tests with ill-conditioned polynomials. The algorithm proposed is compared with a recent paper, presenting the performance of both, according different polynomial classes.
|
24 |
Determinação de zeros na matriz de transferência de sistemas MIMO baseada em análise de correlação. / Determination of transfer matrix zeros from MIMO systems based on correlation analysis.Leandro Cuenca Massaro 02 June 2014 (has links)
O trabalho tem por objetivo avaliar diferentes métodos para identificar zeros na matriz de transferência de sistemas MIMO e propor um método novo baseado em análise de correlação. Estes métodos são utilizados durante a etapa de pré-identificação, a fim de se obter informações relevantes que possam ser utilizadas para se reduzir o tempo dos experimentos, diminuir a variabilidade dos parâmetros dos modelos e melhorar a eficácia dos modelos remanescentes. Estes métodos são aplicados a sistemas MIMO lineares, com dados coletados em malha aberta e em malha fechada. É avaliado o ganho obtido em relação à capacidade de predição dos modelos, a redução do tempo de identificação e o ganho de desempenho do controlador MPC que utiliza estes modelos. O trabalho conclui que a informação de zeros resulta em melhorias no tempo de identificação e no desempenho do controlador MPC. / This work aims to evaluate different methods to identify zeros in the transfer matrix of MIMO systems and to propose a new method based on correlation analysis. These methods are used during the pre-identification stage in order to identify relevant information that can be used to reduce the duration of the experiment, decrease model parameter variability and improve the accuracy of the remaining models. These methods are applied to MIMO linear systems, with data collected in open and closed-loop. The gains obtained in relation to the predictive ability of the models, the reduction of identification time and the performance gain of the MPC using these models are evaluated. This work concludes that the zero information results in improvements in identification time and in performance gain of the MPC controller.
|
25 |
Sobre l'ordenació de les arrels reals de les derivades de polinomis a coeficients reals.Rubió Massegú, Josep 10 February 2005 (has links)
Alguns problemes clàssics sobre teoria analítica de polinomis estan relacionats amb un problema més general: determinar com estan ordenades les arrels reals d'un polinomi a coeficients reals i les arrels reals de totes les seves derivades. Si ens restringim a l'ordenació entre arrels de derivades consecutives d'un polinomi, aquest problema pot formular-se de la següent manera. Sigui n un nombre natural no nul. Per a cada j=0,1,.,n-1 considerem variables indeterminades xj,1,xj,2,...,xj,m(j), que anomenarem variables de derivació j, i que considerarem lligades per les desigualtats xj,1<xj,2<···<xj,m(j). Definir un ordre entre variables de derivacions consecutives significa especificar, per a dues variables qualssevol de derivacions consecutives, diguem xj,k i xj+1,s, una de les tres ordenacions següents: (i) xj,k<xj+1,s, (ii) xj,k=xj+1,s, o (iii) xj,k>xj+1,s. Llavors, el problema consisteix en determinar per a quines ordenacions entre variables de derivacions consecutives existeix un polinomi P(x), de grau n, de manera que si les arrels reals de cada derivada P(j), 0≤j≤n-1, són els nombres yj,1<yj,2<···<yj,r(j), aleshores r(j)=m(j) i entre arrels de derivades consecutives es verifiquen els lligams proposats. És a dir, si (i) xj,k<xj+1,s, (ii) xj,k=xj+1,s, o (iii) xj,k>xj+1,s, aleshores s'ha de complir (a) yj,k<yj+1,s, (b) yj,k=yj+1,s, o (c) yj,k>yj+1,s respectivament. Si tal polinomi existeix aleshores es diu que l'ordenació proposada és representable per un polinomi. El teorema de Rolle imposa restriccions a l'ordenació de les variables en el cas que aquesta ordenació sigui representable per polinomis. Concretament, si xj,k<xj,k' són dues variables de derivació j, aleshores ha d'existir una variable de derivació j+1, xj+1,s, tal que xj,k<xj+1,s<xj,k'. No obstant, les restriccions imposades pel teorema de Rolle no són suficients per a que una ordenació de les variables sigui representable per un polinomi.En aquest sentit, ens proposem assolir els tres objectius següents:(1) Caracteritzar les ordenacions entre variables de derivacions consecutives que són representables per polinomis.(2) Classificar els polinomis en base a l'ordenació de les arrels de derivades consecutives i trobar certs nombres d'interès relacionats amb aquesta classificació, com per exemple el nombre de classes en que queden classificats els polinomis de grau n i el nombre de classes obertes de grau n (classes estables per pertorbacions).(3) Estudiar què succeeix quan es consideren ordenacions que inclouen lligams entre variables de derivacions no consecutives.L'objectiu (1) s'ha assolit establint que les ordenacions entre variables de derivacions consecutives representables per polinomis coincideixen amb les ordenacions que satisfan les restriccions imposades per un resultat que generalitza el teorema de Rolle. Essencialment, s'ha obtingut el recíproc del teorema que diu que entre cada dues arrels reals consecutives d'un polinomi hi ha un nombre senar d'arrels de la derivada comptant multiplicitats.L'objectiu (2) s'ha assolit classificant els polinomis segons l'ordenació que presenten les arrels de les seves derivades consecutives. Els nombres d'interès relacionats amb aquesta classificació s'han obtingut a partir de fórmules recurrents.L'objectiu (3) s'ha assolit determinant els nombres n per als quals la mencionada generalització del teorema de Rolle és suficient per a que una ordenació de les variables que inclogui lligams entre variables de derivacions no consecutives sigui representable per un polinomi. / Some classical problems in analytic theory of polynomials are related to a more general one that consists in determining how the real roots of a real polynomial and the roots of all its derivatives are ordered.If we restrict our attention to the ordering amongst the roots of consecutive derivatives of a polynomial, this problem can be stated as follows: Let n be a nonzero natural number. For each j=0,1,.,n-1 we consider some indeterminate variables xj,1,xj,2,...,xj,m(j), called variables of derivative j, which will be linked by the inequalities xj,1<xj,2<···<xj,m(j). To define an order amongst variables of consecutive derivatives means to specify, for any two variables of consecutive derivatives, say xj,k and xj+1,s, one of the following three relations: (i) xj,k<xj+1,s, (ii) xj,k=xj+1,s, or (iii) xj,k>xj+1,s. Then, the problem consists in determining for which of those orderings amongst variables of consecutive derivatives there exists a polynomial of degree n, say P(x), so that if the real roots of each derivative P(j), 0≤j≤n-1, are the numbers yj,1<yj,2<···<yj,r(j), then r(j)=m(j) and between roots of consecutive derivatives the suggested connections hold. That is, if (i) xj,k<xj+1,s, (ii) xj,k=xj+1,s, or (iii) xj,k>xj+1,s, then (a) yj,k<yj+1,s, (b) yj,k=yj+1,s, or (c) yj,k>yj+1,s must hold respectively. If such a polynomial exists, then we say that the suggested ordering is represented by a polynomial.Rolle's theorem sets up restrictions to the ordering of the variables in the case when this ordering is represented by polynomials. More precisely, if xj,k<xj,k+1 are two consecutive variables of the same derivative j, then there must exist a variable of derivative j+1, namely xj+1,s, such that xj,k<xj+1,s<xj,k+1. However, the restrictions imposed by Rolle's theorem are not sufficient to ensure that an ordering of the variables is represented by a polynomial.In this sense, we intend to achieve the following goals:(1) To characterize the orderings amongst variables of consecutive derivatives that are represented by polynomials.(2) To classify the polynomials according to the ordering of the roots of consecutive derivatives and to find certain numbers of interest related to this classification, such as the number of classes of equivalence in which polynomials of degree n are classified and the number of classes of equivalence which are open as subsets of the space of polynomials of degree at most n.(3) To study what happens when we consider orderings that include connections between variables of non-consecutive derivatives.Goal (1) has been achieved by showing that the orderings amongst variables of consecutive derivatives that are represented by polynomials coincide with the orderings that satisfy the restrictions imposed by a result which generalizes Rolle's theorem. Essentially, we have obtained the inverse of the theorem that states that between every two consecutive real roots of a polynomial, there is an odd number of roots of its derivative counting their multiplicities.Goal (2) has been attained by classifying the polynomials according to the ordering of the roots of their consecutive derivatives. The numbers of interest related to this classification have been obtained by means of recurrent formulae.Goal (3) has been attained by determining all numbers n for which Rolle's theorem generalization, mentioned above, is sufficient to ensure that an ordering of the variables that include connections between variables of non-consecutive derivatives, be represented by a polynomial.
|
26 |
Algoritmos algebricos para enumerar e isolar zeros polinomiais complexos / Algebraic algorithms for enumerate and isolate complex polynomial zerosCamargo-Brunetto, Maria Angelica de Oliveira January 1994 (has links)
O presente trabalho trata do problema de isolar zeros de polinômios complexos. Muitos algoritmos calculam zeros polinomiais, a partir de regiões iniciais disjuntas, cada uma contendo um único zero. Entretanto o problema de obter tais regiões ainda e alvo de estudo, uma vez que as soluções propostas ainda não são satisfatórias. A obtenção de regiões disjuntas, denominada de isolamento de raízes está diretamente relacionada com a contagem (enumeração) do número de raízes numa determinada região do plano complexo. Algoritmos para enumerar e isolar raízes de polinômios complexos são analisados, desenvolvidos e implementados. A proposta de uma modificação no método numérico de Wilf e realizada, na qual se usa basicamente Seqüências de Sturm e o principio do argumento da analise complexa. Um enfoque algébrico e dado para o algoritmo, visando enumerar zeros de forma exata dentro de um retângulo. Diversas melhorias foram introduzidas, principalmente no tratamento da presença de zeros nas fronteiras de um retângulo alvo de pesquisa. O desempenho do algoritmo proposto e avaliado tanto nos aspectos teórico como pratico, através da determinação da complexidade teórica e através de testes experimentais. A abrangência do algoritmo também e verificada, através da realização de testes com polinômios mal condicionados. Uma comparação deste algoritmo com um recente trabalho e também realizada, mostrando a adequação deles de acordo com o tipo de polinômio. / In this thesis, the problem of isolating polynomial complex zeros is treated. There are many algorithms to calculate polynomial zeros, having previously isolated regions, each containning only one zero. Despite of this, the problem of obtainning such regions is still unsatisfactory. This problem, called root isolation, requires number of root in a given region of the complex plane. Algorithms to enumerate and isolate complex polynomial roots are analised, developed and implemented. A modified Wilf method is given, in with Sturm Sequences and the principle of argument is used. An algebraic approach is given, with the aim to enumerate zeros inside a rectangle in an exact way. Several improvements are introduced, mainly to treat zeros on the boundary of the rectangle. The performance of this new algorithm is evaluated theoretical as well as practice point of view, by means experimental tests. The robustness of the algorithm is verified by means of tests with ill-conditioned polynomials. The algorithm proposed is compared with a recent paper, presenting the performance of both, according different polynomial classes.
|
27 |
Algoritmos algebricos para enumerar e isolar zeros polinomiais complexos / Algebraic algorithms for enumerate and isolate complex polynomial zerosCamargo-Brunetto, Maria Angelica de Oliveira January 1994 (has links)
O presente trabalho trata do problema de isolar zeros de polinômios complexos. Muitos algoritmos calculam zeros polinomiais, a partir de regiões iniciais disjuntas, cada uma contendo um único zero. Entretanto o problema de obter tais regiões ainda e alvo de estudo, uma vez que as soluções propostas ainda não são satisfatórias. A obtenção de regiões disjuntas, denominada de isolamento de raízes está diretamente relacionada com a contagem (enumeração) do número de raízes numa determinada região do plano complexo. Algoritmos para enumerar e isolar raízes de polinômios complexos são analisados, desenvolvidos e implementados. A proposta de uma modificação no método numérico de Wilf e realizada, na qual se usa basicamente Seqüências de Sturm e o principio do argumento da analise complexa. Um enfoque algébrico e dado para o algoritmo, visando enumerar zeros de forma exata dentro de um retângulo. Diversas melhorias foram introduzidas, principalmente no tratamento da presença de zeros nas fronteiras de um retângulo alvo de pesquisa. O desempenho do algoritmo proposto e avaliado tanto nos aspectos teórico como pratico, através da determinação da complexidade teórica e através de testes experimentais. A abrangência do algoritmo também e verificada, através da realização de testes com polinômios mal condicionados. Uma comparação deste algoritmo com um recente trabalho e também realizada, mostrando a adequação deles de acordo com o tipo de polinômio. / In this thesis, the problem of isolating polynomial complex zeros is treated. There are many algorithms to calculate polynomial zeros, having previously isolated regions, each containning only one zero. Despite of this, the problem of obtainning such regions is still unsatisfactory. This problem, called root isolation, requires number of root in a given region of the complex plane. Algorithms to enumerate and isolate complex polynomial roots are analised, developed and implemented. A modified Wilf method is given, in with Sturm Sequences and the principle of argument is used. An algebraic approach is given, with the aim to enumerate zeros inside a rectangle in an exact way. Several improvements are introduced, mainly to treat zeros on the boundary of the rectangle. The performance of this new algorithm is evaluated theoretical as well as practice point of view, by means experimental tests. The robustness of the algorithm is verified by means of tests with ill-conditioned polynomials. The algorithm proposed is compared with a recent paper, presenting the performance of both, according different polynomial classes.
|
28 |
Polinômios Palindrômicos com Zeros somente Reais / Palindromic Polynomials with only Real ZerosFazinazzo, Eloiza do Nascimento [UNESP] 28 July 2016 (has links)
Submitted by Eloiza do Nascimento Fazinazzo null (elofazinazzo@hotmail.com) on 2016-09-12T20:02:28Z
No. of bitstreams: 1
EloizaNFazinazzo_Dissertação.pdf: 2610907 bytes, checksum: 0d329afcf9d2ecddb98957de37f5ba97 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-09-14T19:35:27Z (GMT) No. of bitstreams: 1
fazinazzo_en_me_prud.pdf: 2610907 bytes, checksum: 0d329afcf9d2ecddb98957de37f5ba97 (MD5) / Made available in DSpace on 2016-09-14T19:35:27Z (GMT). No. of bitstreams: 1
fazinazzo_en_me_prud.pdf: 2610907 bytes, checksum: 0d329afcf9d2ecddb98957de37f5ba97 (MD5)
Previous issue date: 2016-07-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho foi realizado um estudo sobre o comportamento dos zeros de polinômios palindrômicos, com foco nos zeros reais. Condições necessárias e suficientes para que um polinômio palindrômico com coeficientes reais tenha somente zeros reais são estabelecidas. / In this work is presented a study of the behavior of the zeros of palindromic polynomials, focusing on real zeros. Necessary and sufficient conditions for a palindromic polynomial with real coefficients has only real zeros are established. / FAPESP: 2014/06785-2
|
29 |
Posição e densidade dos zeros de Yang-Lee do modelo de Blume-Emery-Griffiths unidimensional sobre anéis conexos e desconexos /Sá, Fernanda Lopes. January 2007 (has links)
Orientador: Denis Dalmazi / Banca: Marcelo Batista Hott / Banca: Nelson Augusto Alves / Resumo: Neste trabaho realizamos um estudo detalhado do posicionamento dos zeros de Yang- Lee do modelo de Blume-Emery-Griffiths unidimensional atraves de metodos analiticos e numericos. Em particular, analisamos o efeito de uma rede dinamica (aneis conexos e desconexos) sobre tais zeros. Nossos resultados numericos e um calculo via ponto de sela indicam que estes ultimos tendem aos zeros do modelo definido sobre um anel conexo (condicões periodicas de contorno) no limite termodinâmico. Conjecturamos a existência de uma região no espaço de parâmetros do modelo para a qual os zeros correspondem a campos magneticos puramente imaginarios independentemente da temperatura. Nossos resultados mostram que, ao contrario do que sugere resultados anteriores para o modelo de Blume-Capel, nao ha uma relacao direta entre os mínimos de energia e a posicao dos zeros de Yang-Lee. Para o caso de um anel conexo deduzimos uma equação aproximada para a curva dos zeros de Yang-Lee a partir dos autovalores da matriz de transferencia. Resultados numericos e analíticos mostram que mesmo com alguns acoplamentos antiferromagneticos temos zeros para campos magneticos puramente imaginarios. Por fim, calculamos numericamente a densidade dos zeros proximos a ponta da curva a qual pertencem (singularidade da ponta de Yang-Lee) obtendo atraves de ajustes numericos e relações de escala de tamanho finito uma densidade que diverge na ponta com expoente crítico proximo de -1/2 mesmo quando o campo magnetico nao þe puramente imaginario e a rede þe dinamica. / Abstract: In this work we carry out a detailed study of the position of the Yang-Lee zeros of the one-dimensional Blume-Emery-Griffiths model through analytic and numerical methods. In particular, we analyze the effect of a dynamical lattice (connected and non-connected rings) over such zeros. Our numerical results and a saddle point caulculation indicate that such zeros tend to overlap the zeros of the model defined on one-ring (periodic boundary conditions) in the thermodynamic limit. We conjecture the existence of a region in the parameter space of the model where the zeros correspond to purely imaginary magnetic fields independently of the temperature. Here we show that, contrary to the previous results for the Blume-Capel model, there is no straightforward relationship between the energy minima and zeros position. For the connected ring we deduce the approximate equation for the Yang-Lee zeros curve from the eigenvalues of the transfer matrix. Our numerical and analytic results show that even with some antiferromagnetic couplings we have zeros at purely imaginary magnetic field. Finally, we calculate numerically the density of the zeros close to the edge of the curves (Yang-Lee edge singularity) obtaining, through numerical fits and finite size scaling relations, a density which diverges at the edge with critical exponent approximately -1/2 even when the magnetic field is not purely imaginary and the lattice is dynamic. / Mestre
|
30 |
Zeros de polinômios em espaços de Banach / Zeros of polynomials on real Banach spacesLeandro Candido Batista 05 March 2010 (has links)
Este trabalho aborda principalmente dois tópicos em Análise Funcional. No primeiro tópico, estudamos zeros de polinômios em espaços de Banach reais. Apresentamos resultados devidos a J. Ferrer, estabelecendo que todo polinômio fracamente contínuo sobre os subconjuntos limitados de um espaço de Banach, de dual não separável na topologia fraca estrela, admite um subespaço linear fechado de dual não separável na topologia fraca estrela, no qual o polinômio se anula. No segundo tópico, exibimos a versão multilinear do Lema de Phelps devido a R. Aron, A. Cardwell., D. García e I. Zalzuendo. / We study two topics in Functional Analysis. In the first topic, we study zeros of polynomials on real Banach spaces. We present results due to J. Ferrer, stating that every polynomial weakly continuous on bounded subsets of a Banach space, whose dual is not separable in the weak-star topology, admits a closed linear subspace whose dual is not separable in the weak- star topology either, where the polynomial vanishes. In the second topic, we show a multilinear version for the Phelps\' Lemma by R. Aron, A. Cardwell., D. García and I. Zalzuendo.
|
Page generated in 0.0446 seconds