• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of ZnO Nanorods Grown on GaN Using Aqueous Solution Method

Quang, Hong Le, Chua, Soo-Jin, Loh, Kian Ping, Chen, Zhen, Thompson, Carl V., Fitzgerald, Eugene A. 01 1900 (has links)
Uniformly distributed ZnO nanorods with diameter 70-100 nm and 1-2μm long have been successfully grown at low temperatures on GaN by using the inexpensive aqueous solution method. The formation of the ZnO nanorods and the growth parameters are controlled by reactant concentration, temperature and pH. No catalyst is required. The XRD studies show that the ZnO nanorods are single crystals and that they grow along the c axis of the crystal plane. The room temperature photoluminescence measurements have shown ultraviolet peaks at 388nm with high intensity, which are comparable to those found in high quality ZnO films. The mechanism of the nanorod growth in the aqueous solution is proposed. The dependence of the ZnO nanorods on the growth parameters was also investigated. While changing the growth temperature from 60°C to 150°C, the morphology of the ZnO nanorods changed from sharp tip (needle shape) to flat tip (rod shape). These kinds of structure are useful in laser and field emission application. / Singapore-MIT Alliance (SMA)
2

Fabrication and Characterization of ZnO Nanorods Based Intrinsic White Light Emitting Diodes (LEDs)

Bano, Nargis January 2011 (has links)
ZnO material based hetero-junctions are a potential candidate for the design andrealization of intrinsic white light emitting devices (WLEDs) due to several advantages overthe nitride based material system. During the last few years the lack of a reliable andreproducible p-type doping in ZnO material with sufficiently high conductivity and carrierconcentration has initiated an alternative approach to grow n-ZnO nanorods (NRs) on other ptypeinorganic and organic substrates. This thesis deals with ZnO NRs-hetero-junctions basedintrinsic WLEDs grown on p-SiC, n-SiC and p-type polymers. The NRs were grown by thelow temperature aqueous chemical growth (ACG) and the high temperature vapor liquid solid(VLS) method. The structural, electrical and optical properties of these WLEDs wereinvestigated and analyzed by means of scanning electron microscope (SEM), current voltage(I-V), photoluminescence (PL), cathodoluminescence (CL), electroluminescence (EL) anddeep level transient spectroscopy (DLTS). Room temperature (RT) PL spectra of ZnOtypically exhibit one sharp UV peak and possibly one or two broad deep level emissions(DLE) due to deep level defects in the bandgap. For obtaining detailed information about thephysical origin, growth dependence of optically active defects and their spatial distribution,especially to study the re-absorption of the UV in hetero-junction WLEDs structure depthresolved CL spectroscopy, is performed. At room temperature the CL intensity of the DLEband is increased with the increase of the electron beam penetration depth due to the increaseof the defect concentration at the ZnO NRs/substrate interface. The intensity ratio of the DLEto the UV emission, which is very useful in exploring the origin of the deep level emissionand the distribution of the recombination centers, is monitored. It was found that the deepcenters are distributed exponentially along the ZnO NRs and that there are more deep defectsat the root of ZnO NRs compared to the upper part. The RT-EL spectra of WLEDs illustrateemission band covering the whole visible range from 420 nm and up to 800 nm. The whitelightcomponents are distinguished using a Gaussian function and the components were foundto be violet, blue, green, orange and red emission lines. The origin of these emission lines wasfurther identified. Color coordinates measurement of the WLEDs reveals that the emitted lighthas a white impression. The color rendering index (CRI) and the correlated color temperature(CCT) of the fabricated WLEDs were calculated to be 80-92 and 3300-4200 K, respectively.
3

Degradation of Microplastic Residuals in Water by Visible Light Photocatalysis

Tofa, Tajkia Syeed January 2018 (has links)
Microplastic (MP) pollution has recently been recognized as a threat to the biosphere including humans due to its widespread distribution, persistent nature and infinitesimal size. This study focused on the solid phase degradation of microplastic residues (particularly low density polyethylene, LDPE) in water through heterogeneous photocatalysis process by designed photocatalysts of zinc oxide nanorods (ZnO NRs) and platinum nanoparticles deposited on zincoxide nanorods (Pt NPs-ZnO NRs) under visible light irradiation. These photocatalysts were assessed following standard protocol (ISP 10678: 2010), and characterized using SEM, EDX andoptical spectroscopies (UV-VIS and PL). Deposition of Pt-NPs on ZnO NRs for certain minutes has been found optimum that enhanced the photodegradation process about 38% under UV irradiation and 16.5% under visible light irradiation by improving of both electrons-holes pair separation process and visible light absorption. Photocatalytic degradation of LDPE films was confirmed by FTIR spectroscopy, dynamic mechanical analyzer (DMA), optical and electron microscopes. When LDPE film irradiated in presence of Pt-ZnO, degradation was found quicker than ZnO alone of similar concentration which exhibited formation of a large number of wrinkles, cracks and cavities on the film surface. Dynamic mechanical analyzer (DMA) test indicated stiffness and embrittlement of exposed LDPE films in presence of photocatalysts. Thus, the present work provides a new insight about modified catalysts for the degradation of microplastics in water using visible light.
4

Properties And Applications Of Semiconductor And Layered Nanomaterials

Chitara, Basant 03 1900 (has links) (PDF)
This thesis deals with the research work carried out on the properties and applications such as GaN nanoparticles, Graphene etc. Chapter 1 of the thesis gives introduction to nanomaterials and various aspects of the thesis. Chapter 2 of the thesis describes the synthesis of GaN nanocrystals and their use as white light sources and as room temperature gas sensors. It also discusses negative differential resistance above room temperature exhibited by GaN. Electroluminescence from GaN-polymer heterojunction forms the last section of this chapter. Chapter 3 demonstrates the role of defect concentration on the photodetecting properties of ZnO nanorods with different defects prepared at different temperatures. Chapter 4 presents remarkable infrared and ultraviolet photodetector properties of reduced graphene oxide and graphene nanoribbons. Chapter 5 presents the infrared detecting properties of graphene-like few-layer MoS2. The summary of the thesis is given at the end of the thesis.
5

Nanostructured Hybrids with Engineered Interfaces for Efficient Electro, Photo and Gas Phase Catalytic Reactions

Leelavati, A January 2015 (has links) (PDF)
Catalysis using nanostructures has been a topic of substantial interest for fundamental studies and for practical applications in energy and environmental sectors. The growing demand for production of energy and in the cleaning of polluting hazardous vehicles/industrial wastes has led to several studies in catalysis. Despite the substantial growth of heterogeneous catalytic technologies in last decade, they are still far from reaching their full potential in terms of efficiency, selectivity as well as durability. It is often difficult to simultaneously tackle all the mentioned issues with single component catalysts. Most of these challenges are being overcome with heterostructures/supported hybrid catalysts by modifying their interfaces. The properties of heterostructures hybrids arises not only from the individual contributions of the individual components but also from strong synergetic effect arising from the interface. Engineering the interfaces provides pathways to promote the catalytic performance and hence has been explored. In this regard, we have focused on the progress in investigating the active interfaces that affect the performance of metal oxide-metal, semiconductor-metal and coupled semiconductor nanocatalyst hybrids. We explored a wide spectrum of their applications in photo catalytic, electrocatalytic as well as gas-phase reactions and highlighted the importance of the interface for overall performance. The entire study reported in the thesis is organized as follows: Chapter 1 is a general introduction of hybrid nanocatalyst and their role in wide spectra of catalytic reactions in photo/electro catalysis as well as gas-phase reactions. This chapter describes the motivation behind modulating the interface between two or more nanostructures to obtain multifunctional nanocatalysts. Nan catalysts to achieve high throughput with active interfaces are elaborated while indicating the role of morphology, internal induced state, charge transfer, geometric, support, as well as electronic effect for enhanced performance. Motivation behind specific nanocatalyst hybrid, synthesis routes as well as characterization techniques are detailed in the respective chapters. Specific details for different hybrids are described in the following chapters. Chapter 2 describes the synthesis of high dense ultrathin Au wires on ZnO nanorods for electrocatalytic oxidation of ethanol, where the prerequisite step is the formation of amine-modified support. Oleylamine modification not only serves to anchor Au nanowires on ZnO but also passivates surface defects of ZnO, which in turn enhances the photocurrent. In addition to the stability, the support induces electronic effect on Au nanowires, which facilitates redox process at low potential. Most importantly, the support promotes the activity of Au nanowires upon photoirradiation, and thus leading to synergy between electro and photooxidation current. This is of immense importance for photofuel cell technologies. Moreover, the method enabled the first time electrocatalysis on these nanowires that revealed ultrathin nanowires are potentially interesting systems for catalysis applications provided they are stabilized by a suitable support. Chapter 3 deals with the growth of ultrathin Au nanowires on metal oxide (TiO2) coupled with graphene hybrid support in order to overcome the low conductivity of metal oxide. Oleylamine, used for growth of Au nanowires simultaneously functionalizes the support and leads to room temperature GO reduction. With respect to catalytic activity, we also synthesized the binary counterparts (rGO/Au, TiO2/Au ultrathin nanowires) to delineate the contribution of each of the components to the overall electrocatalytic oxidation of ethanol. Comparative analysis of photo and electrocatalytic activity between the different binary and ternary hybrids provides interesting information. Both, electronic effect of TiO2 and electrical conductivity of rGO add their specific beneficial to the nanowires, leading to superior ternary system. Chapter 4 rGO supported ultrathin Au nanowires exhibits high electrocatalytic performance for oxidation of borohydride with a lower onset potential compared to rGO/Au nanoparticles. Electrochemical impedance spectroscopy measurements display abnormal inductive behavior of the synthesized hybrids, indicative of Au surface reactivation. DFT calculations indicate that the origin of the high activity stems from the shift in the position of the Au d-band center. Chapter 5 Different aspect ratio ZnO nanostructures are obtained by varying the solvothermal reaction time. We observed a direct correlation between observed photocatalytic activity, measured photocurrent and length of the ZnO nanorods. Furthermore, photoresponse of the high aspect ratio ZnO nanorods are improved by attaching Au nanoparticles, intimate contact of two components leads to band bending. Thus, the synthesized ZnO/Au heterostructure favors for prominent separation of photogenerated charge carriers. Chapter 6 TiO2 and PbO/TiO2 hybrids are synthesized via non–hydrolytic sol–gel combustion method. Hybrid exhibits higher photocatalytic activity for the degradation of dye than TiO2. The estimated photogenerated species reveals that the origin of enhanced activity stems from the direct oxidization of dye via photogenerated hole rather than radicals. The semiconductors are matched based on their band edge positions, for the formation of energetic radicals to degrade the pollutants. Based on this study, we infer that semiconductors should not neglected (for example Si) based on calculated mismatch of their valence band edges position for photooxidation reaction via radicals. Chapter 7 describes the Pd dopant associated band engineering, a strategy for tuning the optoelectronic properties of ZnO towards enhanced photocatalytic activity. Incorporated Pd heterocation induces internal energy states within the ZnO band gap. The created energy level leads to trends mismatch between photocatalytic activity and measured photocurrent. Formed energy level arrests the photogenerated electrons, which make them not contribute for the photocurrent generation. Hence, the isolated photogenerated hole efficiently oxidizes the pollutants through hydroxyl radicals, and thus leads to enhanced photocatalytic activity. Chapter 8 employed Pd-substituted zinc stannate for CO oxidation as heterogeneous catalyst for the first time. Compared with SnO2 support, zinc stannate based materials exhibits abnormal sudden light-off profiles at selective temperatures. On the basis of DRIFT studies under relevant conditions, we find that the initially formed product gets adsorbed over the catalyst surface. It leads to the accumulation of carbonates as a consequence, both lattice oxygen mobility and further CO interactions are disabled. As soon as Sn redox nature dominates over the accumulated carbonates, this leads to sudden release of lattice oxygen, and thus leads to a sudden full conversion. Therefore, choosing the suitable support material greatly influences the nature of the light-off CO oxidation profile. Chapter 9 Although, reducible oxide supported gold nanostructures exhibits the highest CO oxidation activity; they still suffer from problems such as limited selectivity towards CO in the presence of H2. Both ex-situ and in-situ experiments demonstrate that, Au nanoparticles supported on Zn2SnO4 matrix selectively oxidizes CO. DRIFT experiments revealed that the involvement of OH groups leads to the formation of hydroxycarbonyl under PROX conditions. Chapter 10 This chapter discusses the conclusions for the previous chapters and highlights the possibilities for future scope for the developed nanocatalysts hybrids for energy and environmental applications.
6

Enhancing the degradation rate of microplastics and organizing a study visit about sustainability / Förbättring av nedbrytningshastigheten av mikroplaster och organisering av ett studiebesök om hållbarhet

Al-Ghorabi, Marianne January 2020 (has links)
Microplastics take hundreds to thousands of years to degrade in nature, and pose a threat to the environment. A photocatalytical degradation method have been developed to take advantage of solar light to degrade microplastics, however it takes several months to degrade microplastics with the process. The purpose of this study is to enhance the degradation rate of microplastics by synthesizing a material where photocatalysis is combined with Fenton reaction. A material with zinc oxide nanorods coated with tin oxide and decorated with iron particles (𝑍𝑛𝑂/𝑆𝑛𝑂2/𝐹𝑒0) was synthesized and used to degrade methylene blue, polystyrene and polypropylene. The result show that the degradation rate with a 𝑍𝑛𝑂/𝑆𝑛𝑂2/𝐹𝑒0 – sample is faster than with a 𝑍𝑛𝑂 – sample, and that it can be used to degrade polystyrene and polypropylene.Students’ view on researchers can affect the development of their interest and attitude towards science. Study visits to laboratories have been used to increase students’ interest and give them new experiences. The purpose of this study is to investigate what and how high school students learn during a study visit to a nanotechnology laboratory, and how the study visit affects high school students’ interest and motivation for research and learning. A study visit with 5 stations was organized, and students were given a questionnaire about what they learned during the study visit. Thematic analysis was used to analyze the students’ answers. The result shows that the study visit increased students’ interest in research, and the importance of designing stations so that they are connected to students’ previous knowledge and are within their proximal development zone. / Mikroplaster tar hundratals till tusentals år att bryta ner i naturen och utgör ett hot mot miljön. En fotokatalytisk nedbrytningsprocess har utvecklats där solljus utnyttjas för att bryta ner mikroplaster, dock tar det flera månader att bryta ner mikroplaster med den processen. Syftet med denna studie är att förbättra nedbrytningshastigheten av mikroplaster genom att syntetisera ett material där fotokatalys kombineras med Fenton-reaktion. Ett material med zinkoxid nanorör belagda med tennoxid och dekorerade med järnpartiklar (𝑍𝑛𝑂/𝑆𝑛𝑂2/𝐹𝑒0) syntetiserades och användes för att bryta ner metylenblått, polystyren och polypropen. Resultatet visar att nedbrytningshastigheten med 𝑍𝑛𝑂/𝑆𝑛𝑂2/𝐹𝑒0 – materialet är snabbare än med ett 𝑍𝑛𝑂 – material, och att 𝑍𝑛𝑂/𝑆𝑛𝑂2/𝐹𝑒0 – materialet kan användas för att bryta ned polystyren och polypropen.Elevers syn på forskning och forskare kan påverka utvecklingen av deras intresse och inställning till vetenskap. Studiebesök på laboratorier har använts för att öka elevernas intresse och ge dem nya erfarenheter. Syftet med denna studie är att undersöka vad och hur gymnasieelever lär sig under ett studiebesök i ett nanotekniklaboratorium och hur studiebesöket påverkar gymnasieelevernas intresse och motivation för forskning och lärande. Ett studiebesök med 5 stationer organiserades och eleverna fick ett frågeformulär om vad de lärde sig under studiebesöket. Tematisk analys användes för att analysera elevernas svar. Resultatet visar att studiebesöket ökade elevernas intresse för forskning och vikten av att utforma stationer så att de är kopplade till elevernas tidigare kunskaper och ligger inom deras proximala utvecklingszon.

Page generated in 0.0731 seconds