• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aspekte unendlichdimensionaler Martingaltheorie und ihre Anwendung in der Theorie der Finanzmärkte

Schöckel, Thomas 19 October 2004 (has links)
Wir modellieren einen Finanzmarkt mit unendlich vielen Wertpapieren als stochastischen Prozeß X in stetiger Zeit mit Werten in einem separablen Hilbertraum H. In diesem Rahmen zeigen wir die Äquivalenz von Vollständigkeit des Marktes und der Eindeutigkeit des äquivalenten Martingalmaßes unter der Bedingung, daß X stetige Pfade besitzt. Weiter zeigen wir, daß (unter gewissen technischen Bedingungen) für X die Abwesenheit von asymptotischer Arbitrage der ersten/zweiten Art (im Sinne von Kabanov/Kramkov) äquivalent zur Absolutstetigkeit des Referenzmaßes zu einem eindeutigen, lokal äquivalenten Martingalmaß ist. Hat X stetige Pfade, so ist die Abwesenheit von allgemeiner asymptotischer Arbitrage äquivalent zur Existenz eines äquivalenten lokalen Martingalmaßes. Außerdem geben wir ein Kriterium für die Existenz einer optionalen Zerlegung von X an. Dies wenden wir auf das Problem der Risikominimierung bei vorgegebener Investitionsobergrenze (effizientes Hedgen (Föllmer/Leukert)) an, um dieses im unendlichdimensionalen Kontext zu behandeln. Außerdem stellen wir eine unendlichdimensionale Erweiterung des Heath-Jarrow-Morton-Modells vor und nutzen den Potentialansatz nach Rodgers, um zwei weitere Zinsstrukturmodelle zu konstruieren. Als Beitrag zur allgemeinen stochastischen Analysis in Hilberträumen beweisen wir eine pfadweise Version der Itoformel für stochastische Prozesse mit stetigen Pfaden in einem separablen Hilbertraum. Daraus läßt sich eine pfadweise Version des Satzes über die Vertauschbarkeit von stochastischem und Lebesgue-Integral ableiten. Außerdem zeigen wir eine Version der Clark-Formel für eine Brownsche Bewegung mit Werten in einem Hilbertraum. / We model a financial market with infinitely many assets as a stochastic process X with values in a separable Hilbert space H. In this setting we show the equivalence of market completeness and the uniqueness of the equivalent martingale measure, if X has continuous paths. Another result for our model is, that under some technical conditions, the absence of asymptotic arbitrage of the first/second kind (in the sense of Kabanov/Kramkov) is equivalent to the absolute continuity of the reference measure to a unique, locally equivalent, martingale measure. If X has continuous paths, the absence of general asymptotic arbitrage is equivalent to the existence of an equivalent local martingale measure. Furthermore, we give a sufficient condition for the existence of the optional decomposition of X. We apply this result to the problem of risk minimization with given upper limit for investion (efficient hedging (Föllmer/Leukert)). This allows us to solve this optimization problem in our infinite dimensional context. Another result is an infinite dimensional extension of the Heath-Jarrow-Morton term structure model. Two further term structure models are constructed, using the Markov potential approach developed by Rodgers. As a contribution to the theory of stochastic analysis in Hilbert spaces, we proof a pathwise version of the Ito formula for stochastic processes with continuous paths in a separable Hilbert space. This leads to a pathwise version of the interchangability theorem for stochastic and Lebesgue integrals. We also show a version of the Clark formula for Hilbert space valued Brownian motion.
2

Finite dimensional realizations for term structure models driven by semimartingales

Tappe, Stefan 10 November 2005 (has links)
Es sei ein Heath-Jarrow-Morton Zinsstrukturmodell df(t,T) = alpha(t,T)dt + sigma(t,T)dX_t gegeben, angetrieben von einem mehrdimensionalen Semimartingal X. Das Ziel dieser Arbeit besteht darin, die Existenz endlich dimensionaler Realisierungen für solche Modelle zu untersuchen, wobei wir als treibende Prozesse die Klasse der Grigelionis Prozesse wählen, die insbesondere Levy Prozesse enthält. Zur Bearbeitung der Fragestellung werden zwei veschiedene Ansätze verfolgt. Wir dehnen die Ideen aus der Differenzialgeometrie von Björk und Svensson (2001) auf die vorliegende Situation aus und zeigen, dass das in der zitierten Arbeit bewiesene Kriterium für die Existenz endlich dimensionaler Realisierungen in unserem Fall als notwendiges Kriterium dienlich ist. Dieses Resultat wird auf konkrete Volatilitätsstrukturen angewandt. Im Kontext von sogenannten Benchmark Realisierungen, die eine natürliche Verallgemeinerung von Short Rate Realisierungen darstellen, leiten wir Integro-Differenzialgleichungen her, die für die Untersuchung der Existenz endlich dimensionaler Realisierungen hilfreich sind. Als Verallgemeinerung eines Resultats von Jeffrey (1995) beweisen wir außerdem, dass Zinsstrukturmodelle, die eine generische Benchmark Realisierung besitzen, notwendigerweise eine singuläre Hessesche Matrix haben. Beide Ansätze zeigen, dass neue Phänomene auftreten, sobald der treibende Prozess X Sprünge macht. Es gibt dann auf einmal nur noch sehr wenige Zinsstrukturmodelle, die endlich dimensionale Realisierungen zulassen, was ein beträchtlicher Unterschied zu solchen Modellen ist, die von einer Brownschen Bewegung angetrieben werden. Aus diesem Grund zeigen wir, dass für die in der Literatur oft behandelten Modelle mit deterministischer Richtungsvolatilität eine Folge von endlich dimensionalen Systemen existiert, die gegen das Zinsmodell konvergieren. / Let f(t,T) be a term structure model of Heath-Jarrow-Morton type df(t,T) = alpha(t,T)dt + sigma(t,T)dX_t, driven by a multidimensional semimartingale X. Our objective is to study the existence of finite dimensional realizations for equations of this kind. Choosing the class of Grigelionis processes (including in particular Levy processes) as driving processes, we approach this problem from two different directions. Extending the ideas from differential geometry in Björk and Svensson (2001), we show that the criterion for the existence of finite dimensional realizations, proven in the aforementioned paper, still serves as a necessary condition in our setup. This result is applied to concrete volatility structures. In the context of benchmark realizations, which are a natural generalization of short rate realizations, we derive integro-differential equations, suitable for the analysis of the realization problem. Generalizing Jeffrey (1995), we also prove a result stating that forward rate models, which generically possess a benchmark realization, must have a singular Hessian matrix. Both approaches reveal that, with regard to the results known for driving Wiener processes, new phenomena emerge, as soon as the driving process X has jumps. In particular, the occurrence of jumps severely limits the range of models that admit finite dimensional realizations. For this reason we prove, for the often considered case of deterministic direction volatility structures, the existence of finite dimensional systems converging to the forward rate model.

Page generated in 0.0512 seconds