Return to search

Design and Implementation of Switching Voltage Integrated Circuits Based on Sliding Mode Control

The need for high performance circuits in systems with low-voltage and low-power
requirements has exponentially increased during the few last years due to the sophistication
and miniaturization of electronic components. Most of these circuits are required to have a
very good efficiency behavior in order to extend the battery life of the device.
This dissertation addresses two important topics concerning very high efficiency
circuits with very high performance specifications. The first topic is the design and
implementation of class D audio power amplifiers, keeping their inherent high efficiency
characteristic while improving their linearity performance, reducing their quiescent power
consumption, and minimizing the silicon area. The second topic is the design and
implementation of switching voltage regulators and their controllers, to provide a low-cost,
compact, high efficient and reliable power conversion for integrated circuits.
The first part of this dissertation includes a short, although deep, analysis on class
D amplifiers, their history, principles of operation, architectures, performance metrics,
practical design considerations, and their present and future market distribution. Moreover,
the harmonic distortion of open-loop class D amplifiers based on pulse-width modulation
(PWM) is analyzed by applying the duty cycle variation technique for the most popular
carrier waveforms giving an easy and practical analytic method to evaluate the class
D amplifier distortion and determine its specifications for a given linearity requirement.
Additionally, three class D amplifiers, with an architecture based on sliding mode control, are proposed, designed, fabricated and tested. The amplifiers make use of a hysteretic
controller to avoid the need of complex overhead circuitry typically needed in other
architectures to compensate non-idealities of practical implementations. The design of the
amplifiers based on this technique is compact, small, reliable, and provides a performance
comparable to the state-of-the-art class D amplifiers, but consumes only one tenth of
quiescent power. This characteristic gives to the proposed amplifiers an advantage for
applications with minimal power consumption and very high performance requirements.
The second part of this dissertation presents the design, implementation, and testing
of switching voltage regulators. It starts with a description and brief analysis on the power
converters architectures. It outlines the advantages and drawbacks of the main topologies,
discusses practical design considerations, and compares their current and future market
distribution. Then, two different buck converters are proposed to overcome the most critical
issue in switching voltage regulators: to provide a stable voltage supply for electronic
devices, with good regulation voltage, high efficiency performance, and, most important,
a minimum number of components. The first buck converter, which has been designed,
fabricated and tested, is an integrated dual-output voltage regulator based on sliding mode
control that provides a power efficiency comparable to the conventional solutions, but
potentially saves silicon area and input filter components. The design is based on the idea of
stacking traditional buck converters to provide multiple output voltages with the minimum
number of switches. Finally, a fully integrated buck converter based on sliding mode
control is proposed. The architecture integrates the external passive components to deliver
a complete monolithic solution with minimal silicon area. The buck converter employs
a poly-phase structure to minimize the output current ripple and a hysteretic controller
to avoid the generation of an additional high frequency carrier waveform needed in
conventional solutions. The simulated results are comparable to the state-of-the-art works
even with no additional post-fabrication process to improve the converter performance.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2009-08-7184
Date2009 August 1900
CreatorsRojas Gonzalez, Miguel Angel
ContributorsSanchez-Sinencio, Edgar
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Formatapplication/pdf

Page generated in 0.0021 seconds