Orientador: Ronaldo Dias / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T00:25:46Z (GMT). No. of bitstreams: 1
Morellato_SauloAlmeida_D.pdf: 32854783 bytes, checksum: 040664acd0c8f1efe07cedccda8d11f6 (MD5)
Previous issue date: 2014 / Resumo: Este trabalho aborda dois problemas de inferência relacionados à regressão múltipla não paramétrica: a estimação em modelos aditivos usando um método não paramétrico e o teste de hipóteses para igualdade de curvas ajustadas a partir do modelo. Na etapa de estimação é construída uma generalização dos métodos h-splines, tanto no contexto sequencial adaptativo proposto por Dias (1999), quanto no contexto bayesiano proposto por Dias e Gamerman (2002). Os métodos h-splines fornecem uma escolha automática do número de bases utilizada na estimação do modelo. Estudos de simulação mostram que os resultados obtidos pelos métodos de estimação propostos são superiores aos conseguidos nos pacotes gamlss, mgcv e DPpackage em R. São criados dois testes de hipóteses para testar H0 : f = f0. Um teste de hipóteses que tem sua regra de decisão baseada na distância quadrática integrada entre duas curvas, referente à abordagem sequencial adaptativa, e outro baseado na medida de evidência bayesiana proposta por Pereira e Stern (1999). No teste de hipóteses bayesiano o desempenho da medida de evidência é observado em vários cenários de simulação. A medida proposta apresentou um comportamento que condiz com uma medida de evidência favorável à hipótese H0. No teste baseado na distância entre curvas, o poder do teste foi estimado em diversos cenários usando simulações e os resultados são satisfatórios. Os procedimentos propostos de estimação e teste de hipóteses são aplicados a um conjunto de dados referente ao trabalho de Tanaka e Nishii (2009) sobre o desmatamento no leste da Ásia. O objetivo é escolher um entre oito modelos candidatos. Os testes concordaram apontando um par de modelos como sendo os mais adequados / Abstract: In this work we discuss two inference problems related to multiple nonparametric regression: estimation in additive models using a nonparametric method and hypotheses testing for equality of curves, also considering additive models. In the estimation step, it is constructed a generalization of the h-splines method, both in the sequential adaptive context proposed by Dias (1999), and in the Bayesian context proposed by Dias and Gamerman (2002). The h-splines methods provide an automatic choice of the number of bases used in the estimation of the model. Simulation studies show that the results obtained by proposed estimation methods are superior to those achieved in the packages gamlss, mgcv and DPpackage in R. Two hypotheses testing are created to test H0 : f = f0. A hypotheses test that has a decision rule based on the integrated squared distance between two curves, for adaptive sequential approach, and another based on the Bayesian evidence measure proposed by Pereira and Stern (1999). In Bayesian hypothesis testing the performance measure of evidence is observed in several simulation scenarios. The proposed measure showed a behavior that is consistent with evidence favorable to H0. In the test based on the distance between the curves, the power of the test was estimated at various scenarios using simulations, and the results are satisfactory. At the end of the work the proposed procedures of estimation and hypotheses testing are applied in a dataset concerning to the work of Tanaka and Nishii (2009) about the deforestation in East Asia. The objective is to choose one amongst eight models. The tests point to a pair of models as being the most suitableIn this work we discuss two inference problems related to multiple nonparametric regression: estimation in additive models using a nonparametric method and hypotheses testing for equality of curves, also considering additive models. In the estimation step, it is constructed a generalization of the h-splines method, both in the sequential adaptive context proposed by Dias (1999), and in the Bayesian context proposed by Dias and Gamerman (2002). The h-splines methods provide an automatic choice of the number of bases used in the estimation of the model. Simulation studies show that the results obtained by proposed estimation methods are superior to those achieved in the packages gamlss, mgcv and DPpackage in R. Two hypotheses testing are created to test H0 : f = f0. A hypotheses test that has a decision rule based on the integrated squared distance between two curves, for adaptive sequential approach, and another based on the Bayesian evidence measure proposed by Pereira and Stern (1999). In Bayesian hypothesis testing the performance measure of evidence is observed in several simulation scenarios. The proposed measure showed a behavior that is consistent with evidence favorable to H0. In the test based on the distance between the curves, the power of the test was estimated at various scenarios using simulations, and the results are satisfactory. At the end of the work the proposed procedures of estimation and hypotheses testing are applied in a dataset concerning to the work of Tanaka and Nishii (2009) about the deforestation in East Asia. The objective is to choose one amongst eight models. The tests point to a pair of models as being the most suitable / Doutorado / Estatistica / Doutor em Estatística
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/306505 |
Date | 25 August 2018 |
Creators | Morellato, Saulo Almeida, 1983- |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Dias, Ronaldo, 1959-, Motta, Mariana Rodrigues, Filho, Mario de Castro Andrade, Pereira, Carlos Alberto de Bragança, Diniz, Carlos Alberto Ribeiro |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Estatística |
Source Sets | IBICT Brazilian ETDs |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 82 f. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds