Fehlende Kompetenzen in Mathematik und Naturwissenschaften werden von Studierenden als ein Grund für den Studienabbruch in Ingenieurwissenschaften angegeben (Heublein et al., 2017). Welche Kompetenzen für Studierende zu Beginn des Ingenieurstudiums relevant sind, ist jedoch bisher wenig empirisch untersucht. Das Ziel der vorliegenden Studie ist, relevante mathematische Kompetenzen von Ingenieurstudierenden zu analysieren und dabei sowohl
Wissensbestände als auch die Anwendung von Wissen und die Zusammenhänge zwischen beiden Bereichen zu berücksichtigen. Dazu wurde eine Studie im Mixed-Methods Design entwickelt. In dieser werden die Studierenden hinsichtlich ihrer Dispositionen in Mathematik und Physik zu Beginn des Studiums und am Ende des ersten Studienjahres mit quantitativen
Methoden getestet. Zu diesen beiden und einem weiteren Zeitpunkt am Ende des ersten Semesters wurden zudem die situationsspezifischen Fähigkeiten bei der Bearbeitung von Mathematik- und Physikaufgaben mit Hilfe eines theoretischen Rahmens zum mathematischen Problemlösen mit qualitativen Methoden untersucht. Dieser Theorierahmen umfasste für die Mathematikaufgaben die Aspekte Heurismen (Bruder & Collet, 2011; Schoenfeld, 1980) und Problemlösephasen (Polya, 1957) sowie das Modell der Epistemic Games (Tuminaro, 2004) zur Analyse der Bearbeitung von Physikaufgaben. Die Ergebnisse zeigen Zusammenhänge zwischen mathematischen und physikali-schen Dispositionen. Zusätzlich wird die Bedeutung von Aspekten des Problemlösens deutlich, um die Prozesse bei den Bearbeitungen von Mathematik und Physikaufgaben im ersten Studienjahr zu analysieren. Auf Grundlage der qualitativen Beschreibungen konnten Cluster von Fällen von Studierenden gebildet werden. Mit Hilfe dieser Cluster zeigen sich Zusammenhänge zwischen den Dispositionen und situationsspezifischen Fähigkeiten bei den besonders leistungsstarken und leistungsschwachen Studierenden. / Missing competences in mathematics and sciences are cited by students as a reason for the drop-out in engineering sciences (Heublein et al., 2017). However, the competences that are relevant for students at the beginning of their engineering studies have so far not been investigated in an empirical way. The aim of this study is to analyse relevant mathematical competences of engineering students, taking into account both knowledge and the application of knowledge and the interrelationships between the two. A study in mixed method design was developed for this purpose. In this study, students are tested with regard to their dispositions in mathematics and physics at the beginning of their studies and at the end of the first year
of their studies using quantitative methods. At these two points in time and a further time at the end of the first semester, the situation-specific skills in processing math and physics tasks were examined with the help of a theoretical framework for solving mathematical problems, using qualitative methods. This theoretical framework included for the mathematical tasks the aspects heuristics (Bruder & Collet, 2011; Schoenfeld, 1980) and problem solving phases
(Polya, 1957) as well as the model of Epistemic Games (Tuminaro, 2004) for the analysis of the processing of physical tasks. The results show interrelationships between mathematical and physical dispositions. In addition, it became clear that there is a need of problem solving
aspects in order to analyse the processes involved in the working on maths and physics tasks in the first year of studies. Based on the qualitative descriptions, clusters of student cases could be formed. These clusters show the interrelationships between dispositions and situation-specific skills of particularly high-performing and underperforming students.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/20076 |
Date | 31 July 2018 |
Creators | Lehmann, Malte |
Contributors | Rösken-Winter, Bettina, Filler, Andreas, Rott, Benjamin |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | German |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland, http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.0026 seconds