Menschliche Hirnsignale von der Kopfhaut bieten einen Einblick in die neuronalen Prozesse, denen Wahrnehmung, Denken und Verhalten zugrunde liegen. Rhythmen, die historisch den Grundstein für die Erforschung großflächiger Hirnsignale legten, sind ein häufiges Zeichen neuronaler Koordination, und damit von weitem Interesse für die kognitiven, systemischen und komputationalen Neurowissenschaften. Typischen Messungen von Rhythmizität fehlt es jedoch an Details, z. B. wann und wie lange Rhythmen auftreten. Darüber hinaus weisen neuronale Zeitreihen zahlreiche dynamische Muster auf, von denen nur einige rhythmisch erscheinen. Obwohl aperiodischen Beiträgen traditionell der Status irrelevanten „Rauschens“ zugeschrieben wird, attestieren neuere Erkenntnisse ihnen ebenfalls eine Signalrolle in Bezug auf latente Hirndynamik. Diese kumulative Dissertation fasst Projekte zusammen, die darauf abzielen, rhythmische und aperiodische Beiträge zum menschlichen Elektroenzephalogramm (EEG) methodisch zu dissoziieren, und ihre Relevanz für die flexible Wahrnehmung zu untersuchen. Projekt 1 ermittelt insbesondere die Notwendigkeit und Durchführbarkeit der Trennung rhythmischer von aperiodischer Aktivität in kontinuierlichen Signalen. Projekt 2 kehrt diese Perspektive um und prüft Multiscale Entropy als Index für die Unregelmäßigkeit von Zeitreihen. Diese Arbeit weist auf methodische Probleme in der klassischen Messung zeitlicher Unregelmäßigkeit hin, und schlägt Lösungen für zukünftige Anwendungen vor. Abschließend untersucht Projekt 3 die neurokognitive Relevanz rhythmischer und aperiodischer Zustände. Anhand eines parallelen multimodalen EEG-fMRT-Designs mit gleichzeitiger Pupillenmessung liefert dieses Projekt erste Hinweise dafür, dass erhöhte kognitive Anforderungen Hirnsignale von einem rhythmischen zu einem unregelmäßigen Regime verschieben und impliziert gleichzeitige Neuromodulation und thalamische Aktivierung in diesem Regimewechsel. / Non-invasive signals recorded from the human scalp provide a window on the neural dynamics that shape perception, cognition and action. Historically motivating the assessment of large-scale network dynamics, rhythms are a ubiquitous sign of neural coordination, and a major signal of interest in the cognitive, systems, and computational neurosciences. However, typical descriptions of rhythmicity lack detail, e.g., failing to indicate when and for how long rhythms occur. Moreover, neural times series exhibit a wealth of dynamic patterns, only some of which appear rhythmic. While aperiodic contributions are traditionally relegated to the status of irrelevant ‘noise’, they may be informative of latent processing regimes in their own right. This cumulative dissertation summarizes and discusses work that (a) aims to methodologically dissociate rhythmic and aperiodic contributions to human electroencephalogram (EEG) signals, and (b) probes their relevance for flexible cognition. Specifically, Project 1 highlights the necessity, feasibility and limitations of dissociating rhythmic from aperiodic activity at the single-trial level. Project 2 inverts this perspective, and examines the utility of multi-scale entropy as an index for the irregularity of brain dynamics, with a focus on the relation to rhythmic and aperiodic descriptions. By highlighting prior biases and proposing solutions, this work indicates future directions for measurements of temporal irregularity. Finally, Project 3 examines the neurocognitive relevance of rhythmic and aperiodic regimes with regard to the neurophysiological context in which they may be engaged. Using a parallel multi-modal EEG-fMRI design with concurrent pupillometry, this project provides initial evidence that elevated demands shift cortical dynamics from a rhythmic to an irregular regime; and implicates concurrent phasic neuromodulation and subcortical thalamic engagement in these regime shifts.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/22780 |
Date | 11 November 2020 |
Creators | Kosciessa, Julian Q. |
Contributors | Lindenberger, Ulman, Voytek, Bradley, Obleser, Jonas |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY-NC 4.0) Attribution-NonCommercial 4.0 International, https://creativecommons.org/licenses/by-nc/4.0/ |
Relation | 10.1016/j.neuroimage.2019.116331, 10.1371/journal.pcbi.1007885, 10.1101/2020.06.22.165118 |
Page generated in 0.0023 seconds