Return to search

Algorithmes basés sur la programmation DC et DCA pour l’apprentissage avec la parcimonie et l’apprentissage stochastique en grande dimension / DCA based algorithms for learning with sparsity in high dimensional setting and stochastical learning

De nos jours, avec l'abondance croissante de données de très grande taille, les problèmes de classification de grande dimension ont été mis en évidence comme un challenge dans la communauté d'apprentissage automatique et ont beaucoup attiré l'attention des chercheurs dans le domaine. Au cours des dernières années, les techniques d'apprentissage avec la parcimonie et l'optimisation stochastique se sont prouvées être efficaces pour ce type de problèmes. Dans cette thèse, nous nous concentrons sur le développement des méthodes d'optimisation pour résoudre certaines classes de problèmes concernant ces deux sujets. Nos méthodes sont basées sur la programmation DC (Difference of Convex functions) et DCA (DC Algorithm) étant reconnues comme des outils puissants d'optimisation non convexe. La thèse est composée de trois parties. La première partie aborde le problème de la sélection des variables. La deuxième partie étudie le problème de la sélection de groupes de variables. La dernière partie de la thèse liée à l'apprentissage stochastique. Dans la première partie, nous commençons par la sélection des variables dans le problème discriminant de Fisher (Chapitre 2) et le problème de scoring optimal (Chapitre 3), qui sont les deux approches différentes pour la classification supervisée dans l'espace de grande dimension, dans lequel le nombre de variables est beaucoup plus grand que le nombre d'observations. Poursuivant cette étude, nous étudions la structure du problème d'estimation de matrice de covariance parcimonieuse et fournissons les quatre algorithmes appropriés basés sur la programmation DC et DCA (Chapitre 4). Deux applications en finance et en classification sont étudiées pour illustrer l'efficacité de nos méthodes. La deuxième partie étudie la L_p,0régularisation pour la sélection de groupes de variables (Chapitre 5). En utilisant une approximation DC de la L_p,0norme, nous prouvons que le problème approché, avec des paramètres appropriés, est équivalent au problème original. Considérant deux reformulations équivalentes du problème approché, nous développons différents algorithmes basés sur la programmation DC et DCA pour les résoudre. Comme applications, nous mettons en pratique nos méthodes pour la sélection de groupes de variables dans les problèmes de scoring optimal et d'estimation de multiples matrices de covariance. Dans la troisième partie de la thèse, nous introduisons un DCA stochastique pour des problèmes d'estimation des paramètres à grande échelle (Chapitre 6) dans lesquelles la fonction objectif est la somme d'une grande famille des fonctions non convexes. Comme une étude de cas, nous proposons un schéma DCA stochastique spécial pour le modèle loglinéaire incorporant des variables latentes / These days with the increasing abundance of data with high dimensionality, high dimensional classification problems have been highlighted as a challenge in machine learning community and have attracted a great deal of attention from researchers in the field. In recent years, sparse and stochastic learning techniques have been proven to be useful for this kind of problem. In this thesis, we focus on developing optimization approaches for solving some classes of optimization problems in these two topics. Our methods are based on DC (Difference of Convex functions) programming and DCA (DC Algorithms) which are wellknown as one of the most powerful tools in optimization. The thesis is composed of three parts. The first part tackles the issue of variable selection. The second part studies the problem of group variable selection. The final part of the thesis concerns the stochastic learning. In the first part, we start with the variable selection in the Fisher's discriminant problem (Chapter 2) and the optimal scoring problem (Chapter 3), which are two different approaches for the supervised classification in the high dimensional setting, in which the number of features is much larger than the number of observations. Continuing this study, we study the structure of the sparse covariance matrix estimation problem and propose four appropriate DCA based algorithms (Chapter 4). Two applications in finance and classification are conducted to illustrate the efficiency of our methods. The second part studies the L_p,0regularization for the group variable selection (Chapter 5). Using a DC approximation of the L_p,0norm, we indicate that the approximate problem is equivalent to the original problem with suitable parameters. Considering two equivalent reformulations of the approximate problem we develop DCA based algorithms to solve them. Regarding applications, we implement the proposed algorithms for group feature selection in optimal scoring problem and estimation problem of multiple covariance matrices. In the third part of the thesis, we introduce a stochastic DCA for large scale parameter estimation problems (Chapter 6) in which the objective function is a large sum of nonconvex components. As an application, we propose a special stochastic DCA for the loglinear model incorporating latent variables

Identiferoai:union.ndltd.org:theses.fr/2016LORR0235
Date15 December 2016
CreatorsPhan, Duy Nhat
ContributorsUniversité de Lorraine, Lê Thi, Hoai An
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds