Les écosystèmes forestiers constituent le principal réservoir à long terme de carbone. Toutefois, les dynamiques saisonnières de productions de cette biomasse ligneuse, en relation avec l'assimilation du carbone par l'écosystème et les déterminants environnementaux, restent peu étudiées, limitant notre compréhension du cycle du carbone et particulièrement sa sensibilité aux changements actuels du climat. Cette thèse a pour objectif de comprendre les relations entre le processus de séquestration du carbone dans le bois en formation, la physiologie de l’arbre, l’assimilation du carbone par le peuplement, et les conditions environnementales du site. L’étude porte sur trois sites instrumentés d’une tour à flux avec un peuplement constitué principalement par, respectivement l’épicéa à Tharandt en 2016, le hêtre à Hesse en 2015-2017, et le chêne à Barbeau en 2016. La formation du bois a été suivis par prélèvement hebdomadaire de microcarottes contenant, le phloème, le cambium et le xylème en formation sur des arbres dominants sélectionnés dans l’empreinte de mesure de la tour. La productivité primaire brute a été estimée par Eddy-Covariance, et les variables climatiques mesurés grâce aux dispositifs de la tour. En premier, nous avons mis au point une nouvelle approche histologique, plus rapide et plus précise que la méthode précédemment publiée sur les résineux, pour quantifier la dynamique intra-annuelle de la séquestration du carbone dans le bois en formation, basée sur des mesures répétées de la densité apparente du xylème, et applicable également aux angiospermes. Dans le 2nd chapitre, nous avons montré que l’occurrence en même temps du développement de la canopée et de la reprise de l’activité cambiale pouvait ralentir la croissance radiale du xylème, et favoriser la formation d’un xylème à porosité élevée mais rapidement fonctionnel. Dans le 3ème chapitre, nous avons démontré que le plan ligneux détermine la coordination temporelle entre la croissance en taille et en biomasse du tronc au cours de la saison de végétation, la séquestration du carbone dans le bois en formation étant toujours décalée derrière la croissance radiale du tronc due aux processus internes de la xylogenèse, avec une tendance croissance du décalage temporel pour l’épicéa et le hêtre, mais une tendance décroissante chez le chêne. Le 4ème chapitre démontre que indépendamment du peuplement, la dynamique d'assimilation du carbone présentait une courbe en cloche symétrique culminant en Juin, tandis que la dynamique saisonnière de la séquestration du carbone variait entre les 3 espèces. Le peuplement de hêtres a concentré la séquestration du carbone dans le tronc en Mai-Juillet, tandis que les peuplements d'épicéa et de chênes ont plutôt culminé en Juin-Août et ont concentré cette séquestration vers la 2ème partie de la saison de végétation. Dans le 5ème chapitre, grâce à un suivi de trois ans des flux de carbone, de la croissance des arbres, et des facteurs environnementaux dans le peuplement de hêtres matures, nous avons montré que le classement du bilan de carbone annuel n'était pas maintenu d'une année à l'autre, avec l’assimilation de carbone annuel la plus élevée en 2017, mais la production de biomasse ligneuse la plus élevée en 2016. Cela suggère que l'allocation du carbone de l'assimilation à la séquestration dans la tige ne suit pas une simple règle d’allométrie. Enfin, nous avons observé que, parallèlement à la formation d'un nouveau xylème, la teneur en amidon augmentait également durant la formation du bois. Cela suggère que le stockage de carbone et la croissance du tronc étaient étroitement liés, avec une proportion plus importante chez le chêne que chez l’épicéa et le hêtre. Ainsi, cette thèse a permis d'améliorer nos connaissances sur la dynamique de l'allocation du carbone dans l'arbre, de l'assimilation au niveau des feuilles à la séquestration à long terme dans le bois, et d'explorer leur sensibilité respective aux conditions climatiques. / Forest ecosystems are the major and most perennial terrestrial carbon pool. However, the seasonal dynamics of production of this woody biomass, in relation to the ecosystem carbon uptake remain poorly studied, limiting our understanding of the carbon cycle and particularly its sensitivity to current climate changes. This thesis aimed to better understand the underlying process of carbon sequestration within forming wood, as related to tree physiology, stand carbon assimilation and site environmental conditions. The study was conducted on three instrumented site with a flux tower, the stand is dominated respectively by spruce in Tharandt in 2016, by beech in Hesse in 2015-2017, and by oak in Barbeau in 2016. To monitor wood formation, wood samples containing phloem, cambial zone, and developing xylem were collected weekly on dominant trees within the tower footprint. Flux tower measurements were used to estimate the daily GPP of the stand, and record the climatic conditions. In the 1st chapter, we developed a novel histologic approach, to quantify the intra-annual dynamics of carbon sequestration in spruce forming wood. This approach, based on repeated measurements of xylem apparent density, is easier, faster, and more accurate than the previously available method, and is applicable also to angiosperm species. In the 2nd chapter, we showed that simultaneous occurrence of the canopy development and the resumption of cambial activity slowed down xylem radial growth, and might entail the formation of xylem with high porosity but functional at early growing season. In the 3rd chapter, we demonstrated that the tree-ring structure determined the temporal coordination between stem growth in size and in biomass along the growing season, with carbon sequestration in forming wood always lagging behind stem radial growth due to inner processes of xylogenesis. Indeed, we showed an increasing timelag ranging from ten days to nearly one month for spruce and beech, but a decreasing timelag from nearly three to one week for oak trees. In the 4th chapter, we observed that regardless of the stand, carbon assimilation followed a large and symmetric bell curve peaking in June, while seasonal dynamics of carbon sequestration differed among the three species. The beech trees concentrated carbon sequestration in stem in May-July, while the spruce and oak trees rather peaked in June-August, and completed stem growth towards the second part of the growing season. In the 5th chapter, based on a three-year monitoring of carbon fluxes, trees growth and environmental factors in the mature beech stand, we showed that ranking of annual carbon balance was not maintained from one year to another, with higher carbon assimilation during the hottest year, but higher woody biomass production in the wettest year. This suggests that allocation of carbon from assimilation to sequestration in stem is not following a simple allometric rule. In the last chapter, we observed that parallel to formation of a new xylem, starch content also increased in forming wood, suggesting that storage and stem growth were tightly connected along the growing season, with higher allocation to storage for sessile oak, compared to spruce and beech. This thesis has improved our knowledge about the dynamics of carbon allocation in the tree, from assimilation at the leaf level to long-term sequestration into the wood, and allowed to explore their respective sensitivity to climate conditions. A better quantification of the shift between stem growth in size and in biomass will require to disentangle the kinetics of cellulose and lignin deposition. However, our work contributed to a better understanding of the intra-annual dynamics of stem radial growth and carbon sequestration, which could help to improve modelling of forests net primary productivity, in the context of current global warming.
Identifer | oai:union.ndltd.org:theses.fr/2019AGPT0001 |
Date | 27 March 2019 |
Creators | Andrianantenaina, Anjy |
Contributors | Paris, AgroParisTech, Fournier, Meriem, Longdoz, Bernard |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0034 seconds