Um programa computacional foi desenvolvido para otimização de geometria e simulação de dinâmica molecular baseado em um campo de forças clássicas parametrizado. O solvente foi considerado como um contínuo eletrostático e a interface entre o meio aquoso e o interior de uma membrana biológica como uma superfície de descontinuidade dielétrica, tratada pelo \"método das imagens eletrostáticas\". Nesse método, o campo de polarização produzido na superfície de descontinuidade por uma carga pontual é representado por uma carga fictícia, colocada na fase oposta, cuja distância e sinal é definida pelas condições de contorno na superfície. Diversos sistemas foram estudados, tanto em solventes contínuos como na presença de superfícies de descontinuidade: a) Foram estudadas as distribuições populacionais dos rotâmeros do triptofano na forma zwitteriônica e no peptídeo Ala-Trp- Ala, em solvente polar e apolar. Foi demonstrado que a dinâmica do triptofano e as populações de rotâmeros são compatíveis com as observações experimentais de fluorescência resolvida no tempo e NMR; b) Em um estudo das conformações em polialanina, verificou-se que a estabilidade da estrutura secundária hélice- é um efeito cooperativo entre pontes de hidrogênio em solvente de baixa constante dielétrica. Na presença da interface água-membrana, a hélice- anfifílica de um modelo para a -endorfina estabiliza-se sobre a interface. Um comportamento anfifílico foi também observado na seqüência sinal para o receptor- da e. coli, a qual estabilizou-se perpendicularmente à interface, na conformação parcial hélice- proposta na literatura; c) Em um estudo sobre o hormônio -MSH observou-se que, em solvente polar, de uma conformação helicoidal ele passa para uma conformação estendida. Porém, ao atravessar para o interior hidrofóbico de uma membrana, o peptídeo estabiliza-se em dobra-. Observou-se ainda que a estabilidade dessa conformação no interior da membrana é reforçada por pontes salinas entre os resíduos carregados do peptídeo, os quais formam um \"caroço\" hidrofílico circundado por resíduos hidrofóbicos. Esse arranjo estrutural está em concordância com o proposto para a conformação biologicamente ativa. De um modo geral, o modelo para biomembrana proposto no presente trabalho reproduziu o comportamento hidrofóbico, hidrofílico ou anfifílico dos peptídeos estudados. / A software was developed for optimisation of geometry and molecular dynamics simulation, based on a parameterized classical force field. Solvent was assumed as an electrostatic continuum. The interface between the aqueous medium and the hydrophobic core of biological membranes was described by a surface of dielectric discontinuity, treated by the \"method of images\". In this method, the polarization field produced at the surface of discontinuity by a point charge was represented by a fictitious charge, placed in the opposite phase. The position and signal of this charge-image were defined by boundary conditions at the surface. Several systems were studied, either in continuous solvent, as in the presence of discontinuity surfaces: a) the population distribution of tryptophan rotamers was studied in the zwytterion and in the peptide Ala-Trp-Ala, in polar and apolar solvents; the results for the tryptophan dynamics and the rotamers populations agree with experimental observations using time resolved fluorescence and NMR spectroscopies. b) analysis of polyalanin conformations showed that the stabililty of the -helix is a cooperative effect between hydrogen bonds in low dielectric constant solvent; in the presence of the water-membrane interface, the amphyphilic -helix of a -endorphin model stabilizes on the interface; a similar behavior was observed in the signal sequence for the E. Coli -receptor, that stabilized perpendicular to the interface in a partial -helix conformation, as proposed in the literature. c) calculations on melanotropic hormone a.-MSH showed that in polar solvent it goes from helycoidal conformation to an extended one; in the presence of the interface water-membrane, the peptide goes into the interior of the membrane and stabilizes in a -turn; the stability ofthis conformation was reinforced by salt bridges between charged residues, forming a hydrophilic core surrounded by hydrophobic residues; this structural arrangement agrees with the one proposed for the biologically active conformation of the hormone. In general terms, the model proposed here for the biomembrane was able to mimic the hydrophobic, hydrophihlic or amphyphilic behavior of the peptides studied.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-09122013-161044 |
Date | 25 October 1996 |
Creators | Pascutti, Pedro Geraldo |
Contributors | Ito, Amando Siuiti |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0027 seconds