As células tumorais prosperam como consequência da capacidade de resistir aos mecanismos de morte celular e de evasão da vigilância imunológica. Nós propomos que, em cânceres que possuem o supressor de tumor p53 selvagem, a remediação de ambas dessas defesas pode ser promovida pela transferência genica combinada de vetores adenovirais portadores dos transgenes de p19Arf (proteína supressora de tumor, parceira funcional de p53) e de interferon-beta (IFNbeta, citocina imunomoduladora). De fato, em resultados anteriores, notamos que a transdução combinada (p19Arf/IFNbeta), mas não os tratamentos individuais, em células de melanoma murino B16F10 resulta em aumento massivo de morte celular. Porém a capacidade destas células em processo de morte de desencadear imunidade antitumoral não foi analisada. Nesta tese e em estudos complementares, buscamos investigar os mecanismos moleculares de morte celular envolvidos na resposta imune estimulada por p19Arf/IFNbeta e explorar sua aplicação como imunoterapia do câncer. Inicialmente, em modelo de vacinação profilática, revelamos que o tratamento combinado em células B16F10 promove a expressão de IL-15, ULBP1, dos receptores de morte FAS/APO1 e KILLER/DR5, assim como uma resposta de células natural killer que rejeitam estas células tratadas quando inoculadas em camundongos imunocompetentes singênicos. Após desafio tumoral no flanco oposto, a progressão desses tumores foi fortemente reduzida devido ao engajamento de linfócitos T CD4+ e CD8+, que apresentaram produção aumentada das citocinas IFN-? e TNF-alfa e medeiam proteção antitumoral de longo prazo. Em seguida, explorando um contexto de imunização diferente, a transferência de gênica in situ foi realizada em carcinoma heterotópico de pulmão e exibiu proteção significativa contra um desafio tumoral secundário, apenas quando o tumor primário foi tratado com p19Arf/IFNbeta. Análise de transcriptoma destes tumores indicou uma assinatura quimiotáxica de neutrófilos e linfócitos T CD8+ através das quimiocinas CCL3, CXCL3 e da IL-1beta. Em apoio destas observações, análises mecanicistas in vitro revelaram que células tratadas com p19Arf/IFNbeta ativam programas apoptóticos de p53 e antivirais de IFNbeta, enquanto sucumbem a um processo de morte por necroptose que também libera moléculas de morte celular imunogênica (MCI), calreticulina, ATP e HMGB1. No entanto, procurando potencializar ainda mais o benefício terapêutico dos nossos vetores, exploramos sua associação com o quimioterápico imunogênico doxorrubicina (Dox), que também é indutor de MCI. E nesta associação, percebemos que a Dox aumenta não apenas os níveis de morte celular, mas também a imunogenicidade das células tratadas, proporcionando em um modelo de vacina terapêutica, um controle tumoral superior em camundongos que já portavam antes da vacinação tumores B16F10 ou MCA205. Além disso, a associação in situ destas terapias restaurou a eficácia de uma dose sub-terapêutica de Dox, que em contraste com sua dose terapêutica, não prejudica a função cardíaca. Finalmente, também exploramos a associação com o bloqueio dos pontos de controle imunológicos PD-1 ou CTLA-4, que no modelo de vacina terapêutica, sua associação induziu maior rejeição completa de tumores B16F10. Em conclusão, aqui apresentamos evidências sobre a capacidade da combinação p19Arf/IFNbeta de induzir morte celular e estimulação imunológica. E ressaltamos seu potencial como uma estratégia de imunoterapia do câncer / Cancer cells thrive as a consequence of resisting cell death mechanisms and escaping from immune surveillance. We propose that, in cancers that harbor the wild-type tumor suppressor p53, remediation of both of these defenses can be achieved by harnessing the adenoviral vector mediated gene transfer of p19Arf (tumor suppressor protein, p53 functional partner) together with interferon-beta (IFNbeta, immunomodulatory cytokine). Indeed, in our initial observations, it was noticed that combined-transduction (p19Arf/IFNbeta), but not the individual treatments, of B16F10 mouse melanoma cells results in massive cell death levels. Yet, the capability of these dying cells to unleash antitumor immunity was not investigated. Here in this thesis and in complementary studies, we sought to investigate the molecular mechanisms of cell death involved in the p19Arf/IFNbeta immune stimulation and explore its potential as a mediator of cancer immunotherapy. First, in a prophylactic B16F10 vaccine model, we revealed that the dual treatment led to the up-regulation of IL-15, ULBP1, FAS/APO1 and KILLER/DR5 death receptors, plus a natural killer cell response that completely rejects treated cells when inoculated in syngeneic immunocompetent mice. Whereas, upon a contralateral tumor challenge, progression was strongly reduced by engaging both CD4+ and CD8+ T cells, which displayed augmented production of IFN-? and TNF-alpha cytokines and provided long term antitumor protection. Next, exploring different immunization context, in situ gene transfer in a heterotopic lung carcinoma exhibited significant protection against a secondary tumor challenge only when the primary tumor was treated with p19Arf/IFNbeta. Transcriptome analysis of these treated tumors indicated a chemotaxic signature of neutrophils and CD8+ T cells with the involvement of CCL3, CXCL3 chemokines and IL-1beta. Moreover, in support of this evidence, mechanistic in vitro studies revealed that p19Arf/IFNbeta treated cells reactivate p53 apoptotic and IFNbeta antiviral programs, while succumbing to a necroptosis cell death processes that also releases immunogenic cell death (ICD) molecules, calreticulin, ATP and HMGB1. Yet, aiming to potentiate therapeutic benefit of our vectors, we explored their association with doxorubicin (Dox) immunogenic chemotherapy, which is also an inducer of ICD. And in this setting, this association with Dox enhances not only cell death levels but also immunogenicity of treated cells, providing superior tumor control in a therapeutic vaccine model, where mice were already bearing B16F10 tumors or MCA205 sarcomas before vaccination. Moreover, associated use of these therapies in situ rescued efficacy of a sub-therapeutic dose of Dox, which in contrast to its therapeutic dose, does not impair cardiac function. Finally, we also evaluated the association with PD-1 or CTLA-4 checkpoint blockade immunotherapy, which in the therapeutic vaccine model induced full tumor rejection in a greater number of mice. In sum, here we provide compelling evidence for the ability of the p19Arf/IFNbeta combined gene transfer to promote cell death and immunogenic stimuli and underscored its potential to be applied as a cancer immunotherapy strategy
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-06042018-122815 |
Date | 08 January 2018 |
Creators | Medrano, Ruan Felipe Vieira |
Contributors | Strauss, Bryan Eric |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0028 seconds