The use of drones is becoming increasingly common in the industry due to their efficiency and safety in environments that are difficult to access. The development of industrial drones has created a new need for specialized drones with unique functions. This has led to a growing interest in additive manufacturing as a production method. Additive manufacturing, previously primarily used for prototyping, is now emerging as a viable manufacturing method. This evolution has in turn opened new design methods intended for additive manufacturing, such as topology optimization. The purpose of this project was to redesign a drone to increase its strength, reduce its weight and improve water resistance and appearance. This was achieved using a classic product development process where a concept was developed and refined using simulation tools and a product requirement specification derived from interviews and observations of the existing drone. The product was developed using SolidWorks tools such as Topology Optimization, The Finite Element (FEM) and Computer Aided Design (CAD). The result of the work is a detailed design and a prototype developed using Topology simulations based on the product requirement specification. This project lays the foundation for continued production and development of the drone. The conclusion drawn from the work is that the new product is an improved version in several aspects compared to the previous product.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-533323 |
Date | January 2024 |
Creators | Johansson, Oliver, Svantesson, Tim |
Publisher | Uppsala universitet, Industriell teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds