Return to search

Quelques contributions à l'étude des marches aléatoires en milieu aléatoire

Les marches aléatoires en milieu aléatoire ont suscité un vif intérêt au cours de ces dernières années, tant en sciences appliquées, comme moyen notamment d'affiner des modèles par une prise en compte des fluctuations de l'environnement, qu'en mathématiques, de par la multiplicité et la richesse des comportements qu'elles présentent. Cette thèse est dédiée à l'étude de divers aspects de la transience des marches aléatoires en milieu aléatoire. Elle est composée de deux parties, la première consacrée au cas des environnements de Dirichlet sur Z^d, la seconde au régime transient sous-diffusif sur Z. La loi de Dirichlet apparaît naturellement du fait de son lien avec les marches renforcées. Certaines de ses spécificités permettent de plus d'obtenir des résultats sensiblement plus précis qu'en général. On démontre ainsi tout d'abord une caractérisation de l'intégrabilité des temps de sortie de parties finies de graphes quelconques, qui permet de raffiner un critère de balisticité dans Z^d. On prouve également que les marches aléatoires en environnement de Dirichlet sont transientes directionnellement, avec probabilité positive, dès que les paramètres ne sont pas symétriques. En dimension 1, la thèse se focalise sur le rôle des vallées profondes de l'environnement, en fournissant une nouvelle preuve du théorème de Kesten-Kozlov-Spitzer dans le cas sous-diffusif basée sur l'étude fine du comportement de la marche. Outre une meilleure compréhension de l'émergence de la loi limite, cette preuve a l'avantage de fournir la valeur explicite de ses paramètres.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00497150
Date25 June 2010
CreatorsTournier, Laurent
PublisherUniversité Claude Bernard - Lyon I
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0012 seconds