Return to search

Localisation et décroissance des champs de la mécanique des fluides et des plasmas. Espaces fonctionnels associés à une famille de champs de vecteurs.

La première partie est consacrée à l'étude du comportement asymptotique des solutions de Navier-Stokes incompressible à l'infini de la variable d'espace. On obtient des résultats optimaux de propagation de la décroissance en terme d'espaces à poids, ainsi qu'un developpement asymptotique de la vitesse et de la pression analogue à la loi de Bernoulli. La théorie s'étend à un modèle de la MHD.<br />La seconde partie est consacrée à l'étude des espaces de Sobolev associés à une famille de champs de vecteurs, de type sous-elliptique. Les principaux résultats sont la description des régularités fractionnaires avec la distance de Carnot, la démonstration d'inégalités de Hardy et, dans le cas du groupe de Heisenberg, la théorie des traces sur une hypersurface caractéristique générique.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00136144
Date22 November 2006
CreatorsVigneron, Francois
PublisherEcole Polytechnique X
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0038 seconds