Return to search

Strukturelle und elektronische Eigenschaften von Nanographen-Graphen-Systemen sowie Schnitt- und Faltverhalten von Graphen

Im ersten Teil der Arbeit werden Graphen sowie von Monolagen von auf Nanometer großen Graphenen basierenden Hexa-peri(Dodekyl)-Hexabenzocoronen-Molekülen (HBC-C12), adsorbiert auf Graphen, mit Rastertunnelmikroskopie und –spektroskopie an der Fest-Flüssig-Grenzfläche untersucht. Nanographen-Moleküle selbstaggregieren epitaktisch zu hochgeordneten Monolagen. Die Einheitszellen der Moleküllagen auf Monolage Graphen, Bilage Graphen und auf Graphit sind ununterscheidbar. Die Strukturen der Moleküllagen auf gewellten und flachen Teilen des Graphens stimmen überein. Strom-Spannungs-Kennlinien an Nanographen auf Graphen und auf Graphit weisen auf sehr ähnliche elektronische Eigenschaften hin. Zusammengefasst sind strukturelle sowie elektronische Eigenschaften der Nanographenlage homogen, stabil und definiert. Graphen erweist sich als bestens als Substrat und gleichzeitig als Elektrode für hochgeordnete Lagen von Nanographen-Molekülen geeignet. Im zweiten Teil der Arbeit wird Graphen mit der Sonde eines Rasterkraftmikroskops im Kontaktmodus mechanisch manipuliert. Es wird gezeigt, dass Graphen in nur einem Manipulationsschritt zu Streifen und Spalt geschnitten werden kann. Dieses Verhalten wird mit einem klassischen Modell des Biegens theoretisch erklärt. Das Schnittverhalten liegt in der 2-Dimensionalität des Graphens sowie in dessen Faltbarkeit auf Grund hinreichender Elastizität begründet. Durch mechanische Manipulation mit der Sonde des Rasterkraftmikroskops im Kontaktmodus unter atmosphärischen Bedingungen wird eine Flüssigkeitsschicht zwischen Graphen und dem Siliziumdioxidsubstrat nachgewiesen, welche eine mögliche Erklärung des stark kraftabhängigen Materialkontrasts zwischen Graphen und Siliziumdioxid im Amplitudenmodulationsmodus des Rasterkraftmikroskops darstellt. Weiter wird gezeigt, dass das Falten des Graphens durch mechanische Manipulation eine geeignete Methode zur Herstellung nicht epitaktisch aufeinander gestapelter Graphene darstellt. / In the first part of the thesis graphene as well as monolayers of hexa-peri(dodecyl)-hexabenzocoronene molecules (HBC-C12) based on nanometer sized graphenes adsorbed on graphene is investigated by scanning tunnelling microscopy and tunneling spectroscopy at the solid-liquid interface. The nanographene molecules self-assemble on graphene epitaxially to form highly ordered monolayers. The unit cells of the molecular layers on monolayer graphene, bilayer graphene and on graphite appear identical. The structures of the molecular layers occur equal on corrugated and on flat parts of graphene. Current-voltage-characteristics show that the electronic properties of nanographene on graphene and on graphite are very similar. Summarized, structural as well as electronic properties of the nanographene layer are homogeneous, stable and defined. Graphene proves to be excellently qualified for simultaneously being substrate as well as electrode for highly ordered layers of nanographene based molecules. In the second part of the thesis graphene is mechanically manipulated in air in contact mode of a scanning force microscope. It is shown that a single manipulation process can lead to a stripe cut out of graphene. This behaviour is theoretically explained by a classical bending model. The cutting behavior originates from the 2-dimensionality of graphene and its folding ability because of sufficient elasticity. A liquid layer between graphene and the silicon dioxide substrate is verified by mechanical manipulation in contact mode of a scanning force microscope. Hence a possible explanation could be found for the strongly force dependent material contrast between graphene and silicon dioxide in amplitude modulation mode of the scanning force microscope. Further, it is demonstrated that folding graphene by mechanical manipulation is a proper method for the production of graphene stacked on each other non-epitaxially.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17367
Date11 April 2013
CreatorsEilers, Stefan
ContributorsRabe, Jürgen P., Fischer, Saskia F., Grill, Leonhard
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I
Source SetsHumboldt University of Berlin
LanguageGerman
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
RightsNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Page generated in 0.0027 seconds