Gegenstand der Untersuchungen dieser Arbeit ist die analytische und numerische Studie der plasmonischen Eigenschaften vorhanden in Silbernanodrähten von verschiedener horizontaler Geometrie aufgrund verschiedener Modelle der optischen Antwort der
Leitungselektronen. Nach einer hierarchischen Anordnung von linearen Volumen-Materialmodellen, welche innerhalb der plasmonischen Literatur genutzt werden, untersuchen wir die Verwicklung von (nicht)lokaler und dispersiver Antwort mit
geometrischen Parametern von Monomeren und Dimeren. Unsere analytischen Studien fokussieren sich auf einzelne zylindrische Drähte, wobei wir das Auftreten von Radius-abhängiger Dämpfung in lokalisierten Oberflächenplasmonen nachweisen, ähnlich dem
Konzept der begrenzten mittleren freien Weglänge diskutiert von Kreibig und Mitarbeitern. Weiterhin wird ein Streuproblem mit transversaler Nichtlokalität und "No-slip"- Randbedingung gelöst, gefolgt von einer Diskussion einer Randbedingung, welche
zwischen “No-Slip”- und “Slip”-Bedinung interpoliert. Aus numerischer Sicht wird die Streuung an abgerundeten und gleichseitigen dreieckigen und Bowtie-Drähten behandelt mit Fokus auf einer vollanalytischen Beschreibung der Eckenrundung mittels Bézier-
Kurven. Dies enthüllt den Krümmungsradius als neuen geometrischen Parameter. Das Variieren der Lückenbreite und Eckenrundung führt zu Verstärkungsfaktoren, welche relevant für oberflächenverstärkte Raman-Streuung einzelner Moleküle sind, in ausgezeichneten räumlichen Bereichen abhängig von der Art der Resonanz. Innerhalb der
Extinktionsspektren von dreieckigen und Bowtie-Drähten erscheint eine Sequenz von nichtlokalen Maxima. Diese Sequenz ist am sensitivsten in Bezug auf die Änderung der Krümmung. Die Identifikation der (Hybrid-)Resonanzen basiert auf simulierten Ladungsdichteverteilungen. / Subject of this thesis is the analytical and numerical study of the plasmonic properties present in silver nanowires of different horizontal geometries due to different models of optical response of conduction electrons. Following a hierarchical arrangement of
linear bulk material models, used throughout the plasmonic literature, we investigate the intertwining of (non)local and dispersive response with geometrical parameters of monomers and dimers. Our analytical studies focus on single cylindrical wires, revealing the occurrence of radius-dependent damping of localized surface plasmons similar to the concept of limited-mean-free-path discussed by Kreibig and coworkers. Further, a scattering problem with transverse nonlocality and s no-slip condition is solved followed by a discussion of a boundary condition interpolating between the slip and no-slip conditions. On a numerical level, the scattering by rounded and equilateral triangular and bowtie nanowires is treated based on
a full analytical description of the corner rounding via Bézier curves revealing the radius of curvature as a new geometrical degree of freedom. Tuning of gap size and corner rounding reveals enhancement factors relevant for surface-enhanced Raman scattering of single molecules in distinguished spatial domains dependent on the type of resonance. Within
the extinction spectra a nonlocal peak sequence emerges. This sequence is most sensitive to curvature variations and arises in the triangular monomer and bowtie dimer. The identification of (hybrid) resonances is based on charge density simulations.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/29724 |
Date | 11 July 2024 |
Creators | Wegner, Gino |
Contributors | Busch, Kurt, Peschel, Ulf, Gray, Stephen K. |
Publisher | Humboldt-Universität zu Berlin |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | German |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | (CC BY-ND 4.0) Attribution-NoDerivatives 4.0 International, https://creativecommons.org/licenses/by-nd/4.0/ |
Relation | 10.1103/PhysRevB.107.115425 |
Page generated in 0.003 seconds