Return to search

Réalisation de couches minces nanocomposites par un procédé original couplant la pyrolyse laser et la pulvérisation magnétron : application aux cellules solaires tout silicium de troisième génération / Elaboration of nanostructured thin films by laser pyrolysis and magnetron sputtering combined process : application to all silicon third generation solar cells

Ce travail porte sur la synthèse de couches minces de nanoparticules de silicium (np-Si) encapsulées dans une matrice diélectrique en vue d’une application en tant que couche active pour les cellules solaires de 3ème génération. La technique utilisée pour la synthèse des np-Si est la pyrolyse laser. Cette technique nous a permis d’obtenir des np-Si cristallines d’environ 5 nm de diamètre avec une distribution en taille étroite. Par ailleurs, l’utilisation de gaz précurseurs spécifiques (PH₃, B₂H₆) dans le mélange réactionnel a rendu possible le dopage (type n ou p) des np-Si. Le dopage effectif des np-Si a pu être mis en évidence par des mesures de résonance paramagnétique électronique (RPE). Des films de np-Si seules ont pu être déposés in-situ via la création d’un jet supersonique de gaz contenant les particules de silicium. Les caractérisations optoélectroniques de ces couches ont montré un effet de confinement quantique fort au sein de films, garantissant ainsi un élargissement important du gap du silicium de 1.12 eV (pour le silicium massif) à environ 2 eV (pour les np-Si) ; prérequis indispensable pour réaliser une cellule tandem tout silicium. Des mesures de résistivité sur ces films ont permis de confirmer l’activité des dopants au sein des np-Si. Pour les np-Si dopées au phosphore une diminution de la résistivité de plus de 5 ordres de grandeurs par rapport au np-Si intrinsèques a été observée. Le couplage entre la pyrolyse laser et la pulvérisation magnétron via notre dispositif original de synthèse s’est révélé parfaitement adapté à l’élaboration de couches minces nanocomposites np-Si/SiO₂. Un comportement de type diode a pu être mis en évidence sur une jonction constituée par la superposition d’une couche nanocomposites (type n) sur un substrat de silicium massif (type p). Au-delà de la simple application au photovoltaïque, le procédé couplé, largement éprouvé et optimisé au cours de ce travail de thèse, pourrait permettre la réalisation d’une multitude de couches nanocomposites différentes, puisque la nature chimique des particules et de la matrice peuvent être choisies indépendamment. / This work focuses on the synthesis of thin films composed of silicon nanoparticles (np- Si) embedded in a dielectric matrix for application as an active layer for the third generation solar cells. The technique used for the synthesis of np-Si is the laser pyrolysis. This technique allowed us to obtain 5 nm cristalline np -Si with a narrow size distribution. Furthermore, the use of specific precursor gases (PH₃, B₂H₆) in the reaction mixture enables doping (n or p -type) of np -Si. Effective np -Si doping has been demonstrated by measurements of electron paramagnetic resonance (EPR). Films made of np-Si only, have been deposited in situ by creating a supersonic jet of gas containing the silicon particles. Optoelectronic characterization of these layers showed a strong quantum confinement effect in films, thus ensuring a significant widening of the gap of 1.12 eV silicon (for bulk silicon) to about 2 eV (np -Si); which is an essential prerequisite to achieve a silicon tandem cell. Resistivity measurements on these films have confirmed the dopants activity in the np -Si. For np -Si doped with phosphorus, a significant decrease of the resistivity of more than five orders of magnitude compared to the intrinsic np -Si was observed. Coupling between laser pyrolysis and magnetron sputtering through our original synthesis device proved to be perfectly suited for the elaboration of nanocomposite thin films np-Si/SiO₂. A diode-type behavior has been highlighted on a junction formed by the superposition of a nanocomposite layer (n-type) on a bulk silicon substrate (p-type ). Beyond the simple application to photovoltaics , the coupled process, widely used and optimized during this work could allow the production of a multitude of different nanostructured layers , since the chemical nature of the particles and the matrix can be chosen independently.

Identiferoai:union.ndltd.org:theses.fr/2013PA112357
Date17 December 2013
CreatorsKintz, Harold
ContributorsParis 11, Reynaud, Cécile
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0023 seconds