In this work we study rate of convergence of attractors for parabolic equations. We consider various types of problems where the diffusion coefficient has varied profiles: large diffusion, localized large diffusion and large diffusion except in the neighborhood of a point where it becomes small. In all cases we obtain a singular perturbation where a rate of convergence of attractors is obtained. / Neste trabalho estudamos taxa de convergência de atratores para equações parabólicas. Consideramos vários tipos de problemas onde o coeficiente de difusão apresenta perfís variados: difusão grande, difusão grande localizada e difusão grande exceto na vizinhança de um ponto onde ela torna-se pequena. Em todos os casos consideramos perturbações singulares e uma taxa de convergência para os atratores é obtida.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-27102016-090449 |
Date | 23 September 2016 |
Creators | Leonardo Pires |
Contributors | Alexandre Nolasco de Carvalho, Flank David Morais Bezerra, Ma To Fu, Cesar Rogerio de Oliveira, Juliana Fernandes da Silva Pimentel |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds