Return to search

Investigation of methods used to predict the heat release rate and enclosure temperatures during mattress fires

Fires in buildings ranging in size from small residential houses to large office buildings and sports stadiums pose significant threats to human safety. Many advances have been made in the area of fire behaviour modeling and have lead to much safer, and more efficient fire protection engineering designs, saving countless lives. Fire, however, is still a difficult phenomenon to accurately model and the most important quantity used to describe a fire is the heat (energy) release rate (HRR).
Predictions of the fire hazard posed by mattresses, using relatively simple modeling techniques, were investigated in this research work and compared to full-scale experimental results. Specifically, several common methods of predicting the HRR from a mattress fire were examined. Current spatial separation guidelines, which exist in order to mitigate fire spread between buildings, were used to predict radiation heat flux levels emitted by a burning building and compared to experimental results measured in the field. Enclosure ceiling temperatures, predicted using the Alpert temperature correlation, and average hot gas layer temperature predictions were also compared to experimental results.
Results from this work indicate that the t-squared fire heat release rate modeling technique combined with the common Alpert ceiling temperature correlation, provide a reasonable prediction of real-life fire temperatures as results within 30% were obtained. The cone calorimeter was also found to be a useful tool in the prediction of full-scale fire behaviour and the guidelines used for spatial separation calculations were found to predict the radiant heat flux emitted by a burning building reasonably well.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-09042005-155914
Date05 September 2005
CreatorsThrelfall, Todd
ContributorsTorvi, David A., Simonson, Carey J., Pugsley, Todd, Chen, X. B. (Daniel), Bergstrom, Donald J.
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-09042005-155914/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds