• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • Tagged with
  • 16
  • 16
  • 7
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Temperature Prediction Model for Horizontal Well with Multiple Fractures in Shale Reservoir

Yoshida, Nozomu 03 October 2013 (has links)
Fracture diagnostics is a key technology for well performance prediction of a horizontal well in a shale reservoir. The combination of multiple fracture diagnostic techniques gives reliable results, and temperature data has potential to provide more reliability on the results. In this work, we show an application of a temperature prediction model for a horizontal well with multiple hydraulic fractures in order to investigate the possibility of evaluating reservoir and hydraulic fracture parameters using temperature data. The model consists of wellbore model and reservoir model. The wellbore model was formulated based on mass, momentum and energy balance. The reservoir flow model was solved by a numerical reservoir simulation, and the reservoir thermal model was formulated by transient energy balance equation considering viscous dissipation heating and temperature variation caused by fluid expansion besides heat conduction and convection. The reservoir flow and reservoir thermal model were coupled with the wellbore model to predict temperature distribution in a horizontal well considering boundary conditions at the contact of reservoir and wellbore. In the reservoir system, primary hydraulic fractures which are transverse to the horizontal well were modeled with thin grid cells explicitly, and the hydraulically-induced fracture network around the horizontal well was modeled as higher permeable zone to unstimulated matrix zone. The reservoir grids between two primary fractures were logarithmically spaced in order to capture transient flow behavior. We applied the model to synthetic examples: horizontal well with identical five fractures and with different five fractures. The results show two fundamental mechanisms: heat conduction between formation and wellbore fluid at non-perforated zone, and wellbore fluid mixing effect at each fracture. The synthetic example with identical fractures shows that fracture locations affect wellbore temperature distribution because of fluid mixing effect between reservoir inflow and wellbore fluid. And also, the synthetic example with different fractures shows that the fracture heterogeneity causes different magnitude of temperature change due to inflow variation per fracture. In addition, the model was applied to synthetic examples without network fracture region in order to find the effects by the network. It reveals that under constant rate condition, network fracture masks large temperature change due to small pressure change at the contact between fracture and formation, and that under constant BHP condition, network fracture augments temperature change with the increase of flow rate in wellbore and inflow rate from reservoir. Sensitivity studies were performed on temperature distribution to identify influential parameters out of the reservoir and hydraulic fracture parameters including reservoir porosity, reservoir permeability, fracture half-length, fracture height, fracture permeability, fracture porosity, fracture network parameters, and fracture interference between multiple clusters. In this work, in order to find contributions by a target fracture, temperature change sensitivity is evaluated. Single fracture case reveals that fracture permeability, network fracture parameters and fracture geometries are primary influential parameters on temperature change at the fracture location. And also, multiple fractures case shows that temperature change is augmented with the increase of fracture geometry and is decreased with the increase of fracture permeability. These results show the possibility of using temperature to determine these sensitive parameters, and also the quantified parameter sensitivities provide better understandings of the temperature behavior of horizontal well with multiple fractures.
2

Aircraft fuel system prognostics and health management

Wang, Xiaoyang 01 1900 (has links)
This thesis contains the specific description of Group Design Project (GDP) and Individual Research Project (IRP) that are undertaken by the author and form part of the degree of Master of Science. The target of GDP is to develop a novel and unique commercial flying wing aircraft titled FW-11. FW-11 is a three-year collaborative civil aircraft project between Aviation Industry Corporation of China (AVIC) and Cranfield University. According to the market analysis result conducted by the author, 250 seats capacity and 7500 nautical miles were chosen as the design targets. The IRP is the further study of GDP, which is to enhance the competitive capability by deploying prognostics and health management (PHM) technology to the fuel system of FW-11. As a novel and brand-new technology, PHM enables the real-time transformation of system status data into alert and maintenance information during all ground or flight operating phases to improve the aircraft reliability and operating costs. Aircraft fuel system has a great impact on flight safety. Therefore, the development of fuel system PHM concept is necessary. This thesis began with an investigation of PHM, then a safety and reliability analysis of fuel system was conducted by using FHA, FMEA and FTA. According to these analyses, fuel temperature diagnosis and prognosis were chosen as a case study to improve the reliability and safety of FW-11. The PHM architecture of fuel temperature had been established. A fuel temperature prediction model was also introduced in this thesis.
3

Toward an Improved Model of Asphalt Binder Oxidation in Pavements

Prapaitrakul, Nikornpon 2009 December 1900 (has links)
Asphalt binder oxidation in pavements has been proven to be an ongoing process throughout a pavement's service life. Understanding the nature of the oxidation process is a critical step toward better pavement design to achieve greater pavement durability. The main component in asphalt binder oxidation in pavements is binder oxidative hardening. As the aromatic compounds in asphalt binders are oxidized, more polar carbonyl compounds are created, which results in stronger associations between asphalt components and eventually leads to an increase in asphalt elastic modulus and viscosity. Consequently, the performance of pavements is affected directly by asphalt binder hardening. Also, low levels of accessible air voids in pavements potentially relate to binder oxidation according to a recent research study. When the pavements have sufficiently high accessible air voids (4 percent or greater), the oxidation rate is largely determined by the temperature in the pavement. On the other hand, when the percentage of accessible air voids in the pavement is considerably lower (2 percent or less), the hardening rate of binders in pavements is reduced significantly. Field evidence is mounting that asphalt binder oxidization in pavements produces a binder that is more susceptible to thermal and fatigue cracking. While the fundamentals of this oxidation process are fairly well known, predicting quantitatively the rate of oxidation as a function of depth in the pavement, is not straightforward. A thermal and oxygen transport model, coupled with binder reaction kinetics, provides the basis for such calculations. A one-dimensional thermal transport model, coupled with site-specific model parameters and recent improvements in the availability of required input climate data, enables calculation of pavement temperatures throughout the year, which then is used in an asphalt binder oxidation and transport model to calculate binder properties in the pavement over time. Calculated binder property changes with depth and time are compared to measurements of binder oxidation in the field. The work in this study is aimed at understanding the oxidation kinetics of asphalt binders in pavements, determining the impact of accessible air void levels on asphalt hardening, and ultimately developing an improved model of asphalt binder oxidation in pavements.
4

Advancements in Thermal Integrity Profiling Data Analysis

Johnson, Kevin Russell 17 November 2016 (has links)
Thermal Integrity Profiling (TIP) is a relatively new non-destructive test method for evaluating the post-construction quality of drilled shafts. Therein anomalies in a shaft are indicated by variations in its thermal profile when measured during the curing stages of the concrete. A considerable benefit with this method is in the ability to detect anomalies both inside and outside the reinforcement cage, as well as provide a measure of lateral cage alignment. Similarly remarkable, early developments showed that the shape of a temperature profile (with depth) matched closely with the shape of the shaft, thus allowing for a straightforward interpretation of data. As with any test method, however, the quality of the results depends largely on the level of analysis and the way in which test data is interpreted, which was the focus of this study. This dissertation presents the findings from both field data and computer models to address and improve TIP analysis methods, specifically focusing on: (1) the analysis of non-uniform temperature distributions caused by external boundary conditions, (2) proper selection of temperature-radius relationships, and (3) understanding the effects of time on analysis. Numerical modeling was performed to identify trends in the temperature distributions in drilled shafts during concrete hydration. Specifically, computer generated model data was used to identify the patterns of the non-linear temperature distributions that occur at the ends of a shaft caused by the added heat loss boundary in the longitudinal direction. Similar patterns are observed at locations in a shaft where drastic changes in external boundary conditions exist (e.g. shafts that transition from soil to water or air). Numerical modeling data was also generated to examine the relationship between measured temperatures and shaft size/shape which is a fundamental concept of traditional TIP analysis. A case study involving a shaft from which 24hrs of internal temperature data was investigated and compared to results from a computer generated model made to mimic the field conditions of the shaft. Analysis of field collected and model predicted data was performed to examine the treatment of non-linear temperature distributions at the ends of the shaft and where a mid-shaft change in boundary was encountered. Additionally, the analysis was repeated for data over a wide range of concrete ages to examine the effects of time on the results of analysis. Finally, data from over 200 field tested shafts was collected and analyzed to perform a statistical evaluation of the parameters used for interpretation of the non-linear distributions at the top and bottom of each shaft. This investigation incorporated an iterative algorithm which determined the parameters required to provide a best-fit solution for the top and bottom of each shaft. A collective statistical evaluation of the resulting parameters was then used to better define the proper methods for analyzing end effects. Findings revealed that the effects of non-uniform temperature distributions in drilled shaft thermal profiles can be offset with a curve-fitting algorithm defined by a hyperbolic tangent function that closely matches the observed thermal distribution. Numerical models and statistical evaluations provided a rationale for proper selection of the function defining parameters. Additionally, numerical modeling showed that the true temperature-to-radius relationship in drilled shafts is non-linear, but in most cases a linear approximation is well suited. Finally, analysis of both model and field data showed that concrete age has virtually no effect on the final results of thermal profile analysis, as long as temperature measurements are taken within the dominate stages of concrete hydration.
5

Analysis of borehole heat exchanger in an existing ground-source heat pump installation

Derouet, Marc January 2014 (has links)
Ground-source heat pumps systems (GSHP) are commonly used all over Sweden to supply heat and sometimes cool to different kinds of housings or commercial facilities. Many large installations are by now between 10 and 20 years old. Even when the design of such system has been tackled, rare are the studies that have dealt with following their performance throughout time in detail. Based on conductive heat transfer, the heat extraction process makes the ground temperature decrease when installations are only used for heating. This thesis aims at proposing a method to evaluate how the temperature in a borehole heat exchanger of a GSHP will evolve. The project is focusing on the heat transfer from the ground to the boreholes modelled using Finite Line Source (FLS) based generated g-functions. “g-functions” are non-dimensional parameters characterizing the evolution of the ground thermal resistance enduring variable heat extraction loads. A model using Matlab has been developed and validated against relevant publications. As a case study, the method is applied to an existing 15 years old GSHP installation, composed of 26 boreholes and 3 heat pumps, so as to compare the obtained results with data measured on site. Two sub-borehole fields compose this installation: 14 of them were drilled in 1998 and the remaining 12 in 2009. Measured variable heat extraction loads were superposed using dedicated site g-functions for the two boreholes fields. As a result, a comparison between modelled and calculated heat carrier fluid in the boreholes over the last 6 months is presented here, as well as a 20 years forecast of the ground temperature at the interface with the boreholes.
6

Modelling the potential for multi-location in-sewer heat recovery at a city scale under different seasonal scenarios

Mohamad, A-A., Schellart, A., Kroll, S., Mohamed, Mostafa H.A., Tait, S. 01 September 2018 (has links)
yes / A computational network heat transfer model was utilised to model the potential of heat energy recovery at multiple locations from a city scale combined sewer network. The uniqueness of this network model lies in its whole system validation and implementation for seasonal scenarios in a large sewer network. The network model was developed, on the basis of a previous single pipe heat transfer model, to make it suitable for application in large sewer networks and its performance was validated in this study by predicting the wastewater temperature variation in a sewer network. Since heat energy recovery in sewers may impact negatively on wastewater treatment processes, the viability of large scale heat recovery across a network was assessed by examining the distribution of the wastewater temperatures throughout the network and the wastewater temperature at the wastewater treatment plant inlet. The network heat transfer model was applied to a sewer network with around 3000 pipes and a population equivalent of 79500. Three scenarios; winter, spring and summer were modelled to reflect seasonal variations. The model was run on an hourly basis during dry weather. The modelling results indicated that potential heat energy recovery of around 116, 160 & 207 MWh/day may be obtained in January, March and May respectively, without causing wastewater temperature either in the network or at the inlet of the wastewater treatment plant to reach a level that was unacceptable to the water utility.
7

A Simple Method to Predict Temperatures in Steel Joints with Partial Intumescent Coating Fire Protection

Dai, Xianghe, Wang, Y.C., Bailey, C.G. 01 1900 (has links)
No / Based on temperatures measured in steel joints with different extents of fire protection, this paper proposes a simple method to calculate temperatures in steel joints with partial intumescent coating fire protection. The method combines the simple temperature calculation methods in EN 1993-1-2 (Committee of European Normalisation CEN, Eurocode 3: design of steel structures—part 1-2: general rules—structural fire design, 2005) for unprotected and protected steel structures through the introduction of an exposure factor, which is the ratio of the unprotected surface area of the joint region to the total surface area of the joint area. Using the measured temperatures for fully protected steel joints, this paper first extracts the effective thermal conductivity of the intumescent coating used in the fire tests. Afterwards, this paper presents validation results based on fire test results on joints with partial fire protection. Finally, this paper presents methods to calculate the exposure factor for different types of partially fire protected steel joints.
8

Control-oriented Modeling of Three-Way Catalyst Temperature via Projection-based Model Order Reduction

Zhu, Zhaoxuan, Zhu January 2018 (has links)
No description available.
9

DISTRIBUTED COOLING FOR DATA CENTERS: BENEFITS, PERFORMANCE EVALUATION AND PREDICTION TOOLS

Moazamigoodarzi, Hosein January 2019 (has links)
Improving the efficiency of conventional air-cooled solutions for Data Centers (DCs) is still a major thermal management challenge. Improvements can be made in two ways, through better (1) architectural design and (2) operation. There are three conventional DC cooling architectures: (a) room-based, (b) row-based, and (c) rack-based. Architectures (b) and (c) allows a modular DC design, where the ITE is within an enclosure containing a cooling unit. Due to scalability and ease of implementation, operational cost, and complexity, these modular systems have gained in popularity for many computing applications. However, the yet poor insight into their thermal management leads to limited strategies to scale the size of a DC facility for applications gaining in importance, e.g., edge and hyperscale. We improve the body of knowledge by comparing three cooling architecture’s power consumption. Energy efficiency during DC operation can be improved in two ways: (1) utilizing energy efficient control systems, (2) optimizing the arrangement of ITE. For both cases, a temperature prediction tool is required which can provide real-time information about the temperature distribution as a function of system parameters and the ITE arrangement. To construct such a prediction tool, we must develop a deeper understanding of the airflow, pressure and temperature distributions around the ITE and how these parameters change dynamically with IT load. As yet primitive tools have been developed, but only for architecture (a) listed above. These tools are not transferrable to other architectures due to significant differences in thermal-fluid transport. We examine the airflow and thermal transport within confined racks with separated cold and hot chambers that employ rack- or row-based cooling units, and then propose a parameter-free transient zonal model to obtain the real-time temperature distributions. / Thesis / Doctor of Philosophy (PhD)
10

Investigation of methods used to predict the heat release rate and enclosure temperatures during mattress fires

Threlfall, Todd 05 September 2005
Fires in buildings ranging in size from small residential houses to large office buildings and sports stadiums pose significant threats to human safety. Many advances have been made in the area of fire behaviour modeling and have lead to much safer, and more efficient fire protection engineering designs, saving countless lives. Fire, however, is still a difficult phenomenon to accurately model and the most important quantity used to describe a fire is the heat (energy) release rate (HRR). Predictions of the fire hazard posed by mattresses, using relatively simple modeling techniques, were investigated in this research work and compared to full-scale experimental results. Specifically, several common methods of predicting the HRR from a mattress fire were examined. Current spatial separation guidelines, which exist in order to mitigate fire spread between buildings, were used to predict radiation heat flux levels emitted by a burning building and compared to experimental results measured in the field. Enclosure ceiling temperatures, predicted using the Alpert temperature correlation, and average hot gas layer temperature predictions were also compared to experimental results. Results from this work indicate that the t-squared fire heat release rate modeling technique combined with the common Alpert ceiling temperature correlation, provide a reasonable prediction of real-life fire temperatures as results within 30% were obtained. The cone calorimeter was also found to be a useful tool in the prediction of full-scale fire behaviour and the guidelines used for spatial separation calculations were found to predict the radiant heat flux emitted by a burning building reasonably well.

Page generated in 0.0856 seconds