In this thesis, quantum cluster methods are used to calculate electronic properties of correlated-electron systems. A special focus lies in the determination of the ground state properties of a 3/4 filled triangular lattice within the one-band Hubbard model. At this filling, the electronic density of states exhibits a so-called van Hove singularity and the Fermi surface becomes perfectly nested, causing an instability towards a variety of spin-density-wave (SDW) and superconducting states. While chiral d+id-wave superconductivity has been proposed as the ground state in the weak coupling limit, the situation towards strong interactions is unclear.
Additionally, quantum cluster methods are used here to investigate the interplay of Coulomb interactions and symmetry-breaking mechanisms within the nematic phase of iron-pnictide superconductors. The transition from a tetragonal to an orthorhombic phase is accompanied by a significant change in electronic properties, while long-range magnetic order is not established yet. The driving force of this transition may not only be phonons but also magnetic or orbital fluctuations. The signatures of these scenarios are studied with quantum cluster methods to identify the most important effects.
Here, cluster perturbation theory (CPT) and its variational extention, the variational cluster approach (VCA) are used to treat the respective systems on a level beyond mean-field theory. Short-range correlations are incorporated numerically exactly by exact diagonalization (ED). In the VCA, long-range interactions are included by variational optimization of a fictitious symmetry-breaking field based on a self-energy functional approach. Due to limitations of ED, cluster sizes are limited to a small number of degrees of freedom.
For the 3/4 filled triangular lattice, the VCA is performed for different cluster symmetries. A strong symmetry dependence and finite-size effects make a comparison of the results from different clusters difficult. The ground state in the weak-coupling limit is superconducting with chiral d+id-wave symmetry, in accordance to previous renormalization group approaches. In the regime of strong interactions SDW states are preferred over superconductivity and a collinaer SDW state with nonuniform spin moments on a quadrupled unit cell has the lowest grand potential. At strong coupling, inclusion of short-range quantum fluctuations turns out to favor this collinear state over the chiral phase predicted by mean-field theory. At intermediate interactions, no robust conclusion can be drawn from the results.
Symmetry-breaking mechanisms within the nematic phase of the iron-pnictides are studied using a three-band model for the iron planes on a 4-site cluster. CPT allows a local breaking of the symmetry within the cluster without imposing long-range magnetic order. This is a crucial step beyond mean-field approaches to the magnetically ordered state, where such a nematic phase cannot easily be investigated. Three mechanisms are included to break the fourfold lattice symmetry down to a twofold symmetry. The effects of anisotropic magnetic couplings are compared to an orbital ordering field and anisotropic hoppings. All three mechanisms lead to similar features in the spectral density. Since the anisotropy of the hopping parameters has to be very large to obtain similar results as observed in ARPES, a phonon-driven transition is unlikely.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-191382 |
Date | 12 January 2016 |
Creators | Fischer, André |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Maria Daghofer, Prof. Dr. Jeroen van den Brink, Prof. Dr. Maria Daghofer |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0132 seconds