In dieser Dissertation werden Aspekte von superkonformen Quantenfeldtheorien untersucht, die für die sogenannte AdS/CFT Korrespondenz relevant sind. Die AdS/CFT Korrespondenz beschreibt eine Dualität zwischen Stringtheorien im Anti-de Sitter Raum und superkonformen Quantenfeldtheorien im Minkowskiraum. In diesem Kontext wurde die sog. Wilsonschleifen / Amplituden Dualität entdeckt, die die Übereinstimmung von n-Gluon MHV Amplituden und n-seitigen polygonalen Wilsonschleifen in der N=4 supersymmetrischen Yang-Mills (SYM) Theorie beschreibt. Im ersten Teil dieser Dissertation wird die Wilsonschleifenseite einer solchen möglichen Dualität in der N=6 superkonformen Chern-Simons (ABJM) Theorie untersucht. Das Hauptergebnis dieser Untersuchungen ist, dass der Erwartungswert der n-seitigen polygonalen Wilsonschleifen auf Einschleifenebene verschwindet, während er auf Zweischleifenebene in seiner funktionalen Form identisch zu der analogen Wilsonschleife in N=4 SYM auf Einschleifenniveau ist. Außerdem wird eine anomale konforme Wardidentität für Wilsonschleifen in Chern-Simons Theorie berechnet. Zudem werden die damit im Zusammenhang stehenden Entwicklungen für Amplituden und Korrelatoren in der ABJM Theorie diskutiert. Im zweiten Teil dieser Dissertation werden Dreipunktfunktionen von zwei geschützten Operatoren und einem Twist-Zwei Operator mit beleibigem Spin j in der N=4 SYM Theorie berechnet. Dafür werden die Indizes des Spin j Operators auf den Lichtkegel projiziert und der Korrelator wird in einem Grenzfall untersucht in dem der Impuls der bei dem Spin j Operator einfließt verschwindet. Dieser Grenzfall vereinfacht die perturbative Berechnung erheblich, da alle Dreipunktdiagramme effektiv auf Zweipunktdiagramme reduziert werden und die Abhängigkeit der Mischungsmatrix auf Einschleifenebene herausfällt. Das Ergebnis stimmt mit der Analyse der Operatorproduktentwicklung von Vierpunktfunktionen geschützter Operatoren von Dolan und Osborn aus dem Jahre 2004 überein. / In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investivated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop / amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N =4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/17257 |
Date | 25 October 2012 |
Creators | Wiegandt, Konstantin |
Contributors | Dorn, Harald, Korchemsky, Prof. Dr. Gregory, Plefka, Jan |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Weitergabe unter gleichen Bedingungen, http://creativecommons.org/licenses/by-sa/3.0/de/ |
Page generated in 0.011 seconds