Plasmodium falciparum est responsable de la forme la plus grave de paludisme avec plus de 600 000 décès par an. L'absence de vaccin efficace, combinée à l'émergence de résistances aux traitements récurrents, exige le développement de nouvelles molécules. Afin de limiter ces résistances, il est nécessaire de cibler de nouvelles voies métaboliques indispensables à la survie du parasite. Ce travail de thèse repose sur l'étude de deux voies métaboliques essentielles au parasite que sont la voie de recyclage des bases puriques et la voie de biosynthèse des ancres glycosylphosphatidylinositol (GPI).En ce qui concerne la voie de recyclage des bases puriques, la détermination des structures cristallines de l' « IMP specific 5‘-nucleotidase » (PfISN1) associée aux études biochimiques et biophysiques (SAXS, EM, MALS…), a permis de préciser le mécanisme d'action fournissant ainsi une base solide pour la mise au point d'inhibiteurs. Une banque de plus 3000 composés a été criblée par Fluorimétrie à Balayage Différentiel et les effets des molécules sélectionnées seront évalués sur l'enzyme et sur la croissance du parasite en culture.Quatre cibles thérapeutiques potentielles appartenant à la voie de biosynthèse des ancres GPI ont été sélectionnées. L'utilisation de plusieurs systèmes d'expression disponibles au laboratoire (bactérie, levure, acellulaire en germe de blé) ou via des plateformes européennes pour l‘expression en cellules de mammifères HEK293T (Oxford), de cellules BHK21 transfectées avec le virus de la vaccine modifié, T7-MVA, (Strasbourg) ou la plateforme ESPRIT (Grenoble) ont permis de passer outre les difficultés rencontrées pour exprimer les protéines d'intérêt. L'une des quatre cibles, la mannose-1-phosphate guanylyltransférase (PfMPG), a pu être exprimée de manière suffisante quantitativement et qualitativement pour une caractérisation biochimique et structurale. Une analyse par SAXS et cristallographie aux rayons X a été réalisée / Plasmodium falciparum is responsible for the most severe form of malaria with more than 600,000 deaths per year. The lack of an effective vaccine, combined with the emergence of drug resistant parasites, necessitates the development of new drugs. In order to limit these resistances, it is necessary to target new metabolic pathways essential for parasite survival. This thesis work is based on the study of two metabolic pathways essential to the parasite, the purine salvage pathways and the glycosylphosphatidylinositol (GPI) anchor biosynthesis pathway.Concerning the purine salvage pathway, the determination of the crystal structures of the IMP -specific 5'-nucleotidase (PfISN1) associated with biochemical and biophysical studies (SAXS, EM, MALS, etc.) have allowed to propose a reaction mechanism, thereby providing a solid basis for the conception and development of inhibitors. A library of more than 3000 compounds was screened by Differential Scanning Fluorimetry and the selected molecules will be evaluated for their inhibitory effect on the enzyme and on the growth of parasites in culture.Four potential therapeutic targets belonging to the GPI anchor biosynthesis pathway were selected. The use of several in-house available expression systems (bacteria, yeast, and acellular wheat germ) as well as European platforms for the expression in HEK293T mammalian cells (Oxford), in BHK21 cells transfected with the modified vaccinia virus, T7-MVA, (Strasbourg) or the ESPRIT platform (Grenoble) has allowed us to overcome the difficulties encountered on obtaining the selected protein targets. One of the four targets has been expressed in sufficient amount and quality for biochemical- and structural characterization, namely the mannose-1-phosphate guanylyltransferase (PfMPG). SAXS and X-ray crystallography analyses have been carried out
Identifer | oai:union.ndltd.org:theses.fr/2017LYSE1109 |
Date | 12 July 2017 |
Creators | Carrique, Loic |
Contributors | Lyon, Aghajari, Nushin |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds